
7 Outlook

Further topics in automated reasoning.

7.1 Satisfiability Modulo Theories (SMT)

DPLL checks satisfiability of propositional formulas.

DPLL can also be used for ground first-order formulas without equality:

Ground first-order atoms are treated like propositional variables.

Truth values of P (a), Q(a), Q(f(a)) are independent.

For ground formulas with equality, independence is lost:

If b ≈ c is true, then f(b) ≈ f(c) must also be true.

Similarly for other theories, e. g. linear arithmetic: b > 5 implies b > 3.

We can still use DPLL, but we must combine it with a decision procedure for the theory
part T :

M |=T C: M and the theory axioms T entail C.

New DPLL rules:

T -Propagate:

M ‖ N ⇒DPLL(T) M L ‖ N

if M |=T L where L is undefined in M and L or L occurs in N .

T -Learn:

M ‖ N ⇒DPLL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

T -Backjump:

M Ld M ′ ‖ N ∪ {C} ⇒DPLL(T) M L′ ‖ N ∪ {C}

if M Ld M ′ |= ¬C
and there is some “backjump clause” C ′ ∨ L′ such that
N ∪ {C} |=T C ′ ∨ L′ and M |= ¬C ′,
L′ is undefined under M , and
L′ or L′ occurs in N or in M Ld M ′.
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7.2 Sorted Logics

So far, we have considered only unsorted first-order logic.

In practice, one often considers many-sorted logics:

read/2 becomes read : array × nat → data.

write/3 becomes write : array × nat × data → array.

Variables: x : data

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, natA.

Interpretations of function and predicate symbols correspond to their declarations:

readA : arrayA × natA → dataA

Proof theory, calculi, etc.:

Essentially as in the unsorted case.

More difficult:

Subsorts

Overloading

7.3 Splitting

Tableau-like rule within resolution to eliminate variable-disjoint (positive) disjunctions:

N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

if var(C1) ∩ var(C2) = ∅.

Split clauses are smaller and more likely to be usable for simplification.

Splitting tree is explored using intelligent backtracking.
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7.4 Integrating Theories into Resolution

Certain kinds of axioms are

important in practice,

but difficult for theorem provers.

Most important case: equality

but also: orderings, (associativity and) commutativity, . . .

Idea: Combine ordered resolution and critical pair computation.

Superposition (ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Superposition (non-ground case):

D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and u is not a variable.

Advantages:

No variable overlaps (as in KB-completion).

Stronger ordering restrictions:
Only overlaps of (strictly) maximal sides of (strictly) maximal literals are required.

Stronger redundancy criteria.

Similarly for orderings:

Ordered chaining:

D′ ∨ t′ < t C ′ ∨ s < s′

(D′ ∨ C ′ ∨ t′ < s′)σ

where σ is a most general unifier of t and s.
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Integrating other theories:

Black box:

Use external decision procedure.

Easy, but works only under certain restrictions.

White box:

Integrate using specialized inference rules and theory unification.

Hard work.

Often: integrating more theory axioms is better.
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