6.3 Reduction Pairs and Argument Filterings

Goal: Show the non-existence of K-minimal infinite rewrite sequences

$$
t_{1} \rightarrow_{R}^{*} u_{1} \rightarrow_{K} t_{2} \rightarrow_{R}^{*} u_{2} \rightarrow_{K} \ldots
$$

using well-founded orderings.
We observe that the requirements for the orderings used here are less restrictive than for reduction orderings:
K-rules are only used at the top, so we need stability under substitutions, but compatibility with contexts is unnecessary.

While $\rightarrow_{K^{-}}$-steps should be decreasing, for \rightarrow_{R}-steps it would be sufficient to show that they are not increasing.

This motivates the following definitions:
Rewrite quasi-ordering $\succsim:$
reflexive and transitive binary relation, stable under substitutions, compatible with contexts.

Reduction pair (\succsim, \succ):
\succsim is a rewrite quasi-ordering.
\succ is a well-founded ordering that is stable under substitutions.
\succsim and \succ are compatible: $\succsim \circ \succ \subseteq \succ$ or $\succ \circ \succsim \subseteq \succ$.
(In practice, \succ is almost always the strict part of the quasi-ordering \succsim.)
Clearly, for any reduction ordering $\succ,(\succeq, \succ)$ is a reduction pair. More general reduction pairs can be obtained using argument filterings:

Argument filtering π :

$$
\begin{aligned}
& \pi: \Omega \cup \Omega^{\sharp} \rightarrow \mathbb{N} \cup \text { list of } \mathbb{N} \\
& \pi(f)=\left\{\begin{array}{l}
i \in\{1, \ldots, \operatorname{arity}(f)\}, \text { or } \\
{\left[i_{1}, \ldots, i_{k}\right], \text { where } 1 \leq i_{1}<\cdots<i_{k} \leq \operatorname{arity}(f), 0 \leq k \leq \operatorname{arity}(f)}
\end{array}\right.
\end{aligned}
$$

Extension to terms:
$\pi(x)=x$
$\pi\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\pi\left(t_{i}\right)$, if $\pi(f)=i$
$\pi\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f^{\prime}\left(\pi\left(t_{i_{1}}\right), \ldots, \pi\left(t_{i_{k}}\right)\right)$, if $\pi(f)=\left[i_{1}, \ldots, i_{k}\right]$,
where f^{\prime} / k is a new function symbol.

Let \succ be a reduction ordering, let π be an argument filtering. Define $s \succ_{\pi} t$ iff $\pi(s) \succ$ $\pi(t)$ and $s \succsim \pi t$ iff $\pi(s) \succeq \pi(t)$.

Lemma $6.2\left(\succsim_{\pi}, \succ_{\pi}\right)$ is a reduction pair.

Proof. Follows from the following two properties:
$\pi(s \sigma)=\pi(s) \sigma_{\pi}$, where σ_{π} is the substitution that maps x to $\pi(\sigma(x))$.
$\pi\left(s[u]_{p}\right)= \begin{cases}\pi(s), & \text { if } p \text { does not correspond to any position in } \pi(s) \\ \pi(s)[\pi(u)]_{q}, & \text { if } p \text { corresponds to } q \text { in } \pi(s)\end{cases}$

For interpretation-based orderings (such as polynomial orderings) the idea of "cutting out" certain subterms can be included directly in the definition of the ordering:

Reduction pairs by interpretation:
Let \mathcal{A} be a Σ-algebra; let \succ be a well-founded strict partial ordering on its universe.
Assume that all interpretations $f_{\mathcal{A}}$ of function symbols are weakly monotone, i.e., $a_{i} \succeq b_{i}$ implies $f\left(a_{1}, \ldots, a_{n}\right) \succeq f\left(b_{1}, \ldots, b_{n}\right)$ for all $a_{i}, b_{i} \in U_{\mathcal{A}}$.

Define $s \succsim_{\mathcal{A}} t$ iff $\mathcal{A}(\beta)(s) \succeq \mathcal{A}(\beta)(t)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$; define $s \succ_{\mathcal{A}} t$ iff $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(t)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$.

Then $\left(\succsim_{\mathcal{A}}, \succ_{\mathcal{A}}\right)$ is a reduction pair.
For polynomial orderings, this definition permits interpretations of function symbols where some variable does not occur at all (e.g., $P_{f}(X, Y)=2 X+1$ for a binary function symbol). It is no longer required that every variable must occur with some positive coefficient.

Theorem 6.3 (Arts and Giesl) Let K be a cycle in the dependency graph of the $T R S R$. If there is a reduction pair (\succsim, \succ) such that

- $l \succsim r$ for all $l \rightarrow r \in R$,
- $l \succsim r$ or $l \succ r$ for all $l \rightarrow r \in K$,
- $l \succ r$ for at least one $l \rightarrow r \in K$,
then there is no K-minimal infinite sequence.

Proof. Assume that

$$
t_{1} \rightarrow_{R}^{*} u_{1} \rightarrow_{K} t_{2} \rightarrow_{R}^{*} u_{2} \rightarrow_{K} \ldots
$$

is a K-minimal infinite rewrite sequence.
As $l \succsim r$ for all $l \rightarrow r \in R$, we obtain $t_{i} \succsim u_{i}$ by stability under substitutions, compatibility with contexts, reflexivity and transitivity.

As $l \succsim r$ or $l \succ r$ for all $l \rightarrow r \in K$, we obtain $u_{i}(\succsim \cup \succ) t_{i+1}$ by stability under substitutions.

So we get an infinite $(\succsim \cup \succ$)-sequence containing infinitely many \succ-steps (since every DP in K, in particular the one for which $l \succ r$ holds, is used infinitely often).

By compatibility of \succsim and \succ, we can transform this into an infinite \succ-sequence, contradicting well-foundedness.

The idea can be extended to SCCs in the same way as for the subterm criterion:
Search for a reduction pair (\succsim, \succ) such that $l \succsim r$ for all $l \rightarrow r \in R$ and $l \succsim r$ or $l \succ r$ for all DPs $l \rightarrow r$ in the SCC. Delete all DPs in the SCC for which $l \succ r$. Then re-compute SCCs for the remaining graph and re-start.

Example: Consider the following TRS R from [Arts and Giesl]:

$$
\begin{align*}
& \operatorname{minus}(x, 0) \rightarrow x \tag{1}\\
& \operatorname{minus}(s(x), s(y)) \rightarrow \operatorname{minus}(x, y) \tag{2}\\
& \operatorname{quot}(0, s(y)) \rightarrow 0 \tag{3}\\
& \operatorname{quot}(s(x), s(y)) \rightarrow s(q u o t(\operatorname{minus}(x, y), s(y))) \tag{4}
\end{align*}
$$

(R is not contained in any simplification ordering, since the left-hand side of rule (4) is embedded in the right-hand side after instantiating y by $s(x)$.)
R has three dependency pairs:

$$
\begin{align*}
& \operatorname{minus}^{\sharp}(s(x), s(y)) \rightarrow \operatorname{minus}^{\sharp}(x, y) \tag{5}\\
& \text { quot }^{\sharp}(s(x), s(y)) \rightarrow \operatorname{quot}^{\sharp}\left(\operatorname{minus}^{\sharp}(x, y), s(y)\right) \tag{6}\\
& \text { quot }^{\sharp}(s(x), s(y)) \rightarrow \operatorname{minus}^{\sharp}(x, y) \tag{7}
\end{align*}
$$

The dependency graph of R is

There are exactly two SCCs (and also two cycles). The cycle at (5) can be handled using the subterm criterion with $\pi\left(\right.$ minus $\left.^{\sharp}\right)=1$. For the cycle at (6) we can use an argument filtering π that maps minus to 1 and leaves all other function symbols unchanged (that is, $\pi(g)=[1, \ldots, \operatorname{arity}(g)]$ for every g different from minus.) After applying the argument filtering, we compare left and right-hand sides using an LPO with precedence quot $>s$ (the precedence of other symbols is irrelevant). We obtain $l \succ r$ for (6) and $l \succsim r$ for (1), (2), (3), (4), so the previous theorem can be applied.

The methods described so far are particular cases of $D P$ processors:
A DP processor

$$
\frac{(G, R)}{\left(G_{1}, R_{1}\right), \ldots,\left(G_{n}, R_{n}\right)}
$$

takes a graph G and a TRS R as input and produces a set of pairs consisting of a graph and a TRS.

It is sound and complete if there are K-minimal infinite sequences for G and R if and only if there are K-minimal infinite sequences for at least one of the pairs $\left(G_{i}, R_{i}\right)$.

Examples:

$$
\frac{(G, R)}{\left(S C C_{1}, R\right), \ldots,\left(S C C_{n}, R\right)}
$$

where $S C C_{1}, \ldots, S C C_{n}$ are the strongly connected components of G.

$$
\frac{(G, R)}{(G \backslash N, R)}
$$

if there is an SCC of G and a simple projection π such that $\pi(l) \unrhd \pi(r)$ for all DPs $l \rightarrow r$ in the SCC, and N is the set of DPs of the SCC for which $\pi(l) \triangleright \pi(r)$.
(and analogously for reduction pairs)

The dependency method can also be used for proving termination of innermost rewriting: $s \xrightarrow{\mathrm{i}}_{R} t$ if $s \rightarrow_{R} t$ at position p and no rule of R can be applied at a position strictly below p. (DP processors for innermost termination are more powerful than for ordinary termination, and for program analysis, innermost termination is usually sufficient.)

