4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of rewrite rules.

(If R is finite: decision procedure for E.)

How to ensure termination?

Fix a reduction ordering \succ and construct R in such a way that $\rightarrow_R \subseteq \succ$ (i. e., $l \succ r$ for every $l \rightarrow r \in R$).

How to ensure confluence?

Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of equations E and a set of rules R: $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$

At the beginning, $E = E_0$ is the input set and $R = R_0$ is empty. At the end, E should be empty; then R is the result.

For each step $E, R \vdash E', R'$, the equational theories of $E \cup R$ and $E' \cup R'$ agree: $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Notations:

The formula $s \approx t$ denotes either $s \approx t$ or $t \approx s$.

CP(R) denotes the set of all critical pairs between rules in R.

Orient:

$$\frac{E \cup \{s \approx t\}, R}{E, R \cup \{s \rightarrow t\}} \quad \text{if } s \succ t$$

Note: There are equations $s \approx t$ that cannot be oriented, i.e., neither $s \succ t$ nor $t \succ s$.

Trivial equations cannot be oriented – but we don't need them anyway:

Delete:

 $\frac{E \cup \{s \approx s\}, \quad R}{E, \quad R}$

Critical pairs between rules in R are turned into additional equations:

Deduce:

$$\begin{array}{ll} \displaystyle \frac{E, \ R}{E \cup \{s \approx t\}, \ R} & \text{if } \langle s, t \rangle \in \operatorname{CP}(R). \end{array}$$

Note: If $\langle s, t \rangle \in \operatorname{CP}(R)$ then $s \leftarrow_R u \to_R t$ and hence $R \models s \approx t$.

The following inference rules are not absolutely necessary, but very useful (e.g., to get rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

$$\frac{E \cup \{s \approx t\}, \quad R}{E \cup \{u \approx t\}, \quad R} \qquad \text{if } s \to_R u.$$

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule:

$$\frac{E, \quad R \cup \{s \to t\}}{E, \quad R \cup \{s \to u\}} \qquad \text{if } t \to_R u.$$

Simplification of the left-hand side may influence orientability and orientation. Therefore, it yields an *equation*:

L-Simplify-Rule:

$$\frac{E, \quad R \cup \{s \to t\}}{E \cup \{u \approx t\}, \quad R} \qquad \text{if } s \to_R u \text{ using a rule } l \to r \in R$$
such that $s \sqsupset l$ (see next slide).

For technical reasons, the lhs of $s \to t$ may only be simplified using a rule $l \to r$, if $l \to r$ cannot be simplified using $s \to t$, that is, if $s \sqsupset l$, where the encompassment quasi-ordering \sqsupset is defined by

 $s \supseteq l$ if $s/p = l\sigma$ for some p and σ

and $\Box = \Box \setminus \Box$ is the strict part of \Box .

Lemma 4.32 \square is a well-founded strict partial ordering.

Lemma 4.33 If $E, R \vdash E', R'$, then $\approx_{E \cup R} = \approx_{E' \cup R'}$.

Lemma 4.34 If $E, R \vdash E', R'$ and $\rightarrow_R \subseteq \succ$, then $\rightarrow_{R'} \subseteq \succ$.

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can happen:

- (1) We reach a state where no more inference rules are applicable and E is not empty. \Rightarrow Failure (try again with another ordering?)
- (2) We reach a state where E is empty and all critical pairs between the rules in the current R have been checked.
- (3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$ with $R_0 = \emptyset$ is called a run of the completion procedure with input E_0 and \succ .

For a run, $E_{\infty} = \bigcup_{i \ge 0} E_i$ and $R_{\infty} = \bigcup_{i \ge 0} R_i$.

The sets of persistent equations or rules of the run are $E_* = \bigcup_{i\geq 0} \bigcap_{j\geq i} E_j$ and $R_* = \bigcup_{i\geq 0} \bigcap_{j\geq i} R_j$.

Note: If the run is finite and ends with E_n, R_n , then $E_* = E_n$ and $R_* = R_n$.

A run is called *fair*, if $CP(R_*) \subseteq E_{\infty}$ (i.e., if every critical pair between persisting rules is computed at some step of the derivation).

Goal:

Show: If a run is fair and E_* is empty, then R_* is convergent and equivalent to E_0 .

In particular: If a run is fair and E_* is empty, then $\approx_{E_0} = \approx_{E_\infty \cup R_\infty} = \bigoplus_{E_\infty \cup R_\infty}^* = \downarrow_{R_*}$.

General assumptions from now on:

 $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \dots$ is a fair run.

 R_0 and E_* are empty.

A proof of $s \approx t$ in $E_{\infty} \cup R_{\infty}$ is a finite sequence (s_0, \ldots, s_n) such that $s = s_0, t = s_n$, and for all $i \in \{1, \ldots, n\}$:

- (1) $s_{i-1} \leftrightarrow_{E_{\infty}} s_i$, or
- (2) $s_{i-1} \rightarrow_{R_{\infty}} s_i$, or
- (3) $s_{i-1} \leftarrow_{R_{\infty}} s_i$.

The pairs (s_{i-1}, s_i) are called proof steps.

A proof is called a rewrite proof in R_* , if there is a $k \in \{0, \ldots, n\}$ such that $s_{i-1} \rightarrow_{R_*} s_i$ for $1 \le i \le k$ and $s_{i-1} \leftarrow_{R_*} s_i$ for $k+1 \le i \le n$

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every proof that is not a rewrite proof in R_* there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R_* .

We associate a cost $c(s_{i-1}, s_i)$ with every proof step as follows:

- (1) If $s_{i-1} \leftrightarrow_{E_{\infty}} s_i$, then $c(s_{i-1}, s_i) = (\{s_{i-1}, s_i\}, -, -)$, where the first component is a multiset of terms and denotes an arbitrary (irrelevant) term.
- (2) If $s_{i-1} \to_{R_{\infty}} s_i$ using $l \to r$, then $c(s_{i-1}, s_i) = (\{s_{i-1}\}, l, s_i)$.
- (3) If $s_{i-1} \leftarrow_{R_{\infty}} s_i$ using $l \to r$, then $c(s_{i-1}, s_i) = (\{s_i\}, l, s_{i-1})$.

Proof steps are compared using the lexicographic combination of the multiset extension of the reduction ordering \succ , the encompassment ordering \sqsupset , and the reduction ordering \succ .

The cost c(P) of a proof P is the multiset of the costs of its proof steps.

The proof ordering \succ_C compares the costs of proofs using the multiset extension of the proof step ordering.

Lemma 4.35 \succ_C is a well-founded ordering.

Lemma 4.36 Let P be a proof in $E_{\infty} \cup R_{\infty}$. If P is not a rewrite proof in R_* , then there exists an equivalent proof P' in $E_{\infty} \cup R_{\infty}$ such that $P \succ_C P'$.

Proof. If P is not a rewrite proof in R_* , then it contains

- (a) a proof step that is in E_{∞} , or
- (b) a proof step that is in $R_{\infty} \setminus R_*$, or
- (c) a subproof $s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1}$ (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller subproof:

Case (a): A proof step using an equation $s \approx t$ is in E_{∞} . This equation must be deleted during the run.

If $s \approx t$ is deleted using Orient:

 $\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\infty}} s_i \ldots$

If $s \approx t$ is deleted using Delete:

```
\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_{i-1} \ldots \implies \ldots s_{i-1} \ldots
```

If $s \approx t$ is deleted using Simplify-Eq:

 $\ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_i \ldots \implies \ldots s_{i-1} \rightarrow_{R_{\infty}} s' \leftrightarrow_{E_{\infty}} s_i \ldots$

Case (b): A proof step using a rule $s \to t$ is in $R_{\infty} \setminus R_*$. This rule must be deleted during the run.

If $s \to t$ is deleted using *R*-Simplify-Rule: $\dots s_{i-1} \to_{R_{\infty}} s_i \dots \implies \dots s_{i-1} \to_{R_{\infty}} s' \leftarrow_{R_{\infty}} s_i \dots$

If $s \to t$ is deleted using *L*-Simplify-Rule: $\dots s_{i-1} \to_{R_{\infty}} s_i \dots \implies \dots s_{i-1} \to_{R_{\infty}} s' \leftrightarrow_{E_{\infty}} s_i \dots$

Case (c): A subproof has the form $s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1}$.

If there is no overlap or a non-critical overlap:

 $\dots s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1} \dots \Longrightarrow \dots s_{i-1} \rightarrow_{R_*}^* s' \leftarrow_{R_*}^* s_{i+1} \dots$

If there is a critical pair that has been added using *Deduce*:

 $\ldots s_{i-1} \leftarrow_{R_*} s_i \rightarrow_{R_*} s_{i+1} \ldots \Longrightarrow \ldots s_{i-1} \leftrightarrow_{E_{\infty}} s_{i+1} \ldots$

In all cases, checking that the replacement subproof is smaller than the replaced subproof is routine. $\hfill \Box$

Theorem 4.37 Let $E_0, R_0 \vdash E_1, R_1 \vdash E_2, R_2 \vdash \ldots$ be a fair run and let R_0 and E_* be empty. Then

- (1) every proof in $E_{\infty} \cup R_{\infty}$ is equivalent to a rewrite proof in R_* ,
- (2) R_* is equivalent to E_0 , and
- (3) R_* is convergent.

Proof. (1) By well-founded induction on \succ_C using the previous lemma.

(2) Clearly $\approx_{E_{\infty}\cup R_{\infty}} = \approx_{E_0}$. Since $R_* \subseteq R_{\infty}$, we get $\approx_{R_*} \subseteq \approx_{E_{\infty}\cup R_{\infty}}$. On the other hand, by (1), $\approx_{E_{\infty}\cup R_{\infty}} \subseteq \approx_{R_*}$.

(3) Since $\rightarrow_{R_*} \subseteq \succ$, R_* is terminating. By (1), R_* is confluent.