4.5 Termination

Termination problems:
Given a finite TRS R and a term t, are all R-reductions starting from t terminating?
Given a finite TRS R, are all R-reductions terminating?

Proposition 4.17 Both termination problems for TRSs are undecidable in general.

Proof. Encode Turing machines using rewrite rules and reduce the (uniform) halting problems for TMs to the termination problems for TRSs.

Consequence:
Decidable criteria for termination are not complete.

Reduction Orderings

Goal:
Given a finite TRS R, show termination of R by looking at finitely many rules $l \rightarrow$ $r \in R$, rather than at infinitely many possible replacement steps $s \rightarrow_{R} s^{\prime}$.

A binary relation \sqsupset over $\mathrm{T}_{\Sigma}(X)$ is called compatible with Σ-operations, if $s \sqsupset s^{\prime}$ implies $f\left(t_{1}, \ldots, s, \ldots, t_{n}\right) \sqsupset f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)$ for all $f \in \Omega$ and $s, s^{\prime}, t_{i} \in \mathrm{~T}_{\Sigma}(X)$.

Lemma 4.18 The relation \sqsupset is compatible with Σ-operations, if and only if $s \sqsupset s^{\prime}$ implies $t[s]_{p} \sqsupset t\left[s^{\prime}\right]_{p}$ for all $s, s^{\prime}, t \in \mathrm{~T}_{\Sigma}(X)$ and $p \in \operatorname{pos}(t)$.

Note: compatible with Σ-operations = compatible with contexts.
A binary relation \sqsupset over $\mathrm{T}_{\Sigma}(X)$ is called stable under substitutions, if $s \sqsupset s^{\prime}$ implies $s \sigma \sqsupset s^{\prime} \sigma$ for all $s, s^{\prime} \in \mathrm{T}_{\Sigma}(X)$ and substitutions σ.

A binary relation \sqsupset is called a rewrite relation, if it is compatible with Σ-operations and stable under substitutions.

Example: If R is a TRS, then \rightarrow_{R} is a rewrite relation.
A strict partial ordering over $\mathrm{T}_{\Sigma}(X)$ that is a rewrite relation is called rewrite ordering.
A well-founded rewrite ordering is called reduction ordering.

Theorem 4.19 A TRS R terminates if and only if there exists a reduction ordering \succ such that $l \succ r$ for every rule $l \rightarrow r \in R$.

Proof. "if": $s \rightarrow_{R} s^{\prime}$ if and only if $s=t[l \sigma]_{p}, s^{\prime}=t[r \sigma]_{p}$. If $l \succ r$, then $l \sigma \succ r \sigma$ and therefore $t[l \sigma]_{p} \succ t[r \sigma]_{p}$. This implies $\rightarrow_{R} \subseteq \succ$. Since \succ is a well-founded ordering, \rightarrow_{R} is terminating.
"only if": Define $\succ=\rightarrow_{R}^{+}$. If \rightarrow_{R} is terminating, then \succ is a reduction ordering.

Two Different Scenarios

Depending on the application, the TRS whose termination we want to show can be
(i) fixed and known in advance, or
(ii) evolving (e.g., generated by some saturation process).

Methods for case (ii) are also usable for case (i).
Many methods for case (i) are not usable for case (ii).
We will first consider case (ii);
additional techniques for case (i) will be considered later.

The Interpretation Method

Proving termination by interpretation:
Let \mathcal{A} be a Σ-algebra; let \succ be a well-founded strict partial ordering on its universe.
Define the ordering $\succ_{\mathcal{A}}$ over $\mathrm{T}_{\Sigma}(X)$ by $s \succ_{\mathcal{A}} t$ iff $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)(t)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$.

Is $\succ_{\mathcal{A}}$ a reduction ordering?

Lemma $4.20 \succ_{\mathcal{A}}$ is stable under substitutions.

Proof. Let $s \succ_{\mathcal{A}} s^{\prime}$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)\left(s^{\prime}\right)$ for all assignments $\beta: X \rightarrow U_{\mathcal{A}}$. Let σ be a substitution. We have to show that $\mathcal{A}(\gamma)(s \sigma) \succ \mathcal{A}(\gamma)\left(s^{\prime} \sigma\right)$ for all assignments $\gamma: X \rightarrow U_{\mathcal{A}}$. Choose $\beta=\gamma \circ \sigma$, then by the substitution lemma, $\mathcal{A}(\gamma)(s \sigma)=\mathcal{A}(\beta)(s) \succ$ $\mathcal{A}(\beta)\left(s^{\prime}\right)=\mathcal{A}(\gamma)\left(s^{\prime} \sigma\right)$. Therefore $s \sigma \succ_{\mathcal{A}} s^{\prime} \sigma$.

A function $f: U_{\mathcal{A}}^{n} \rightarrow U_{\mathcal{A}}$ is called monotone (with respect to \succ), if $a \succ a^{\prime}$ implies $f\left(b_{1}, \ldots, a, \ldots, b_{n}\right) \succ f\left(b_{1}, \ldots, a^{\prime}, \ldots, b_{n}\right)$ for all $a, a^{\prime}, b_{i} \in U_{\mathcal{A}}$.

Lemma 4.21 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. \succ, then $\succ_{\mathcal{A}}$ is compatible with Σ-operations.

Proof. Let $s \succ s^{\prime}$, that is, $\mathcal{A}(\beta)(s) \succ \mathcal{A}(\beta)\left(s^{\prime}\right)$ for all $\beta: X \rightarrow U_{\mathcal{A}}$. Let $\beta: X \rightarrow U_{\mathcal{A}}$ be an arbitrary assignment. Then

$$
\begin{aligned}
\mathcal{A}(\beta)\left(f\left(t_{1}, \ldots, s, \ldots, t_{n}\right)\right) & =f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(t_{1}\right), \ldots, \mathcal{A}(\beta)(s), \ldots, \mathcal{A}(\beta)\left(t_{n}\right)\right) \\
& \succ f_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(t_{1}\right), \ldots, \mathcal{A}(\beta)\left(s^{\prime}\right), \ldots, \mathcal{A}(\beta)\left(t_{n}\right)\right) \\
& =\mathcal{A}(\beta)\left(f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)\right)
\end{aligned}
$$

Therefore $f\left(t_{1}, \ldots, s, \ldots, t_{n}\right) \succ_{\mathcal{A}} f\left(t_{1}, \ldots, s^{\prime}, \ldots, t_{n}\right)$.

Theorem 4.22 If the interpretation $f_{\mathcal{A}}$ of every function symbol f is monotone w.r.t. \succ, then $\succ_{\mathcal{A}}$ is a reduction ordering.

Proof. By the previous two lemmas, $\succ_{\mathcal{A}}$ is a rewrite relation. If there were an infinite chain $s_{1} \succ_{\mathcal{A}} s_{2} \succ_{\mathcal{A}} \ldots$, then it would correspond to an infinite chain $\mathcal{A}(\beta)\left(s_{1}\right) \succ$ $\mathcal{A}(\beta)\left(s_{2}\right) \succ \ldots$ (with β chosen arbitrarily). Thus $\succ_{\mathcal{A}}$ is well-founded. Irreflexivity and transitivity are proved similarly.

Polynomial Orderings

Polynomial orderings:
Instance of the interpretation method:
The carrier set $U_{\mathcal{A}}$ is \mathbb{N} or some subset of \mathbb{N}.
To every function symbol f with arity n we associate a polynomial $P_{f}\left(X_{1}, \ldots, X_{n}\right) \in$ $\mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$ with coefficients in \mathbb{N} and indeterminates X_{1}, \ldots, X_{n}. Then we define $f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)=P_{f}\left(a_{1}, \ldots, a_{n}\right)$ for $a_{i} \in U_{\mathcal{A}}$.

Requirement 1:
If $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$, then $f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right) \in U_{\mathcal{A}}$. (Otherwise, \mathcal{A} would not be a Σ algebra.)

Requirement 2:
$f_{\mathcal{A}}$ must be monotone (w.r.t. \succ).

From now on:
$U_{\mathcal{A}}=\{n \in \mathbb{N} \mid n \geq 1\}$.
If $\operatorname{arity}(f)=0$, then P_{f} is a constant ≥ 1.
If $\operatorname{arity}(f)=n \geq 1$, then P_{f} is a polynomial $P\left(X_{1}, \ldots, X_{n}\right)$, such that every X_{i} occurs in some monomial with exponent at least 1 and non-zero coefficient.
\Rightarrow Requirements 1 and 2 are satisfied.
The mapping from function symbols to polynomials can be extended to terms: A term t containing the variables x_{1}, \ldots, x_{n} yields a polynomial P_{t} with indeterminates X_{1}, \ldots, X_{n} (where X_{i} corresponds to $\beta\left(x_{i}\right)$).

Example:
$\Omega=\{b / 0, f / 1, g / 3\}$
$P_{b}=3, \quad P_{f}\left(X_{1}\right)=X_{1}^{2}, \quad P_{g}\left(X_{1}, X_{2}, X_{3}\right)=X_{1}+X_{2} X_{3}$.
Let $t=g(f(b), f(x), y)$, then $P_{t}(X, Y)=9+X^{2} Y$.
If P, Q are polynomials in $\mathbb{N}\left[X_{1}, \ldots, X_{n}\right]$, we write $P>Q$ if $P\left(a_{1}, \ldots, a_{n}\right)>Q\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in U_{\mathcal{A}}$.

Clearly, $l \succ_{\mathcal{A}} r$ iff $P_{l}>P_{r}$ iff $P_{l}-P_{r}>0$.
Question: Can we check $P_{l}-P_{r}>0$ automatically?
Hilbert's 10th Problem:
Given a polynomial $P \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ with integer coefficients, is $P=0$ for some n-tuple of natural numbers?

Theorem 4.23 Hilbert's 10th Problem is undecidable.

Proposition 4.24 Given a polynomial interpretation and two terms l, r, it is undecidable whether $P_{l}>P_{r}$.

Proof. By reduction of Hilbert's 10th Problem.

One easy case:
If we restrict to linear polynomials, deciding whether $P_{l}-P_{r}>0$ is trivial:
$\sum k_{i} a_{i}+k>0$ for all $a_{1}, \ldots, a_{n} \geq 1$ if and only if
$k_{i} \geq 0$ for all $i \in\{1, \ldots, n\}$,
and $\sum k_{i}+k>0$

Another possible solution:
Test whether $P_{l}\left(a_{1}, \ldots, a_{n}\right)>P_{r}\left(a_{1}, \ldots, a_{n}\right)$ for all $a_{1}, \ldots, a_{n} \in\{x \in \mathbb{R} \mid x \geq 1\}$.
This is decidable (but hard). Since $U_{\mathcal{A}} \subseteq\{x \in \mathbb{R} \mid x \geq 1\}$, it implies $P_{l}>P_{r}$.
Alternatively:
Use fast overapproximations.

Simplification Orderings

The proper subterm ordering \triangleright is defined by $s \triangleright t$ if and only if $s / p=t$ for some position $p \neq \varepsilon$ of s.

A rewrite ordering \succ over $\mathrm{T}_{\Sigma}(X)$ is called simplification ordering, if it has the subterm property: $s \triangleright t$ implies $s \succ t$ for all $s, t \in \mathrm{~T}_{\Sigma}(X)$.

Example:

Let $R_{\text {emb }}$ be the rewrite system $R_{\text {emb }}=\left\{f\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{i} \mid f \in \Omega, 1 \leq i \leq n=\right.$ $\operatorname{arity}(f)\}$.

Define $\triangleright_{\mathrm{emb}}=\rightarrow_{R_{\mathrm{emb}}}^{+}$and $\unrhd_{\mathrm{emb}}=\rightarrow_{R_{\mathrm{emb}}}^{*}$ ("homeomorphic embedding relation").
$\triangleright_{\text {emb }}$ is a simplification ordering.

Lemma 4.25 If \succ is a simplification ordering, then $s \triangleright_{\mathrm{emb}} t$ implies $s \succ t$ and $s \unrhd_{\mathrm{emb}} t$ implies $s \succeq t$.

Proof. Since \succ is transitive and \succeq is transitive and reflexive, it suffices to show that $s \rightarrow_{R_{\text {emb }}} t$ implies $s \succ t$. By definition, $s \rightarrow_{R_{\text {emb }}} t$ if and only if $s=s[l \sigma]$ and $t=s[r \sigma]$ for some rule $l \rightarrow r \in R_{\mathrm{emb}}$. Obviously, $l \triangleright r$ for all rules in R_{emb}, hence $l \succ r$. Since \succ is a rewrite relation, $s=s[l \sigma] \succ s[r \sigma]=t$.

Goal:
Show that every simplification ordering is well-founded (and therefore a reduction ordering).

Note: This works only for finite signatures!
To fix this for infinite signatures, the definition of simplification orderings and the definition of embedding have to be modified.

Theorem 4.26 ("Kruskal's Theorem") Let Σ be a finite signature, let X be a finite set of variables. Then for every infinite sequence $t_{1}, t_{2}, t_{3}, \ldots$ there are indices $j>i$ such that $t_{j} \unrhd_{\text {emb }} t_{i}$. $\unrhd_{\text {emb }}$ is called a well-partial-ordering (wpo).)

Proof. See Baader and Nipkow, page 113-115.

Theorem 4.27 (Dershowitz) If Σ is a finite signature, then every simplification ordering \succ on $\mathrm{T}_{\Sigma}(X)$ is well-founded (and therefore a reduction ordering).

Proof. Suppose that $t_{1} \succ t_{2} \succ t_{3} \succ \ldots$ is an infinite descending chain.
First assume that there is an $x \in \operatorname{var}\left(t_{i+1}\right) \backslash \operatorname{var}\left(t_{i}\right)$. Let $\sigma=\left\{x \mapsto t_{i}\right\}$, then $t_{i+1} \sigma \unrhd$ $x \sigma=t_{i}$ and therefore $t_{i}=t_{i} \sigma \succ t_{i+1} \sigma \succeq t_{i}$, contradicting reflexivity.
Consequently, $\operatorname{var}\left(t_{i}\right) \supseteq \operatorname{var}\left(t_{i+1}\right)$ and $t_{i} \in \mathrm{~T}_{\Sigma}(V)$ for all i, where V is the finite set $\operatorname{var}\left(t_{1}\right)$. By Kruskal's Theorem, there are $i<j$ with $t_{i} \unlhd_{\text {emb }} t_{j}$. Hence $t_{i} \preceq t_{j}$, contradicting $t_{i} \succ t_{j}$.

There are reduction orderings that are not simplification orderings and terminating TRSs that are not contained in any simplification ordering.

Example:
Let $R=\{f(f(x)) \rightarrow f(g(f(x)))\}$.
R terminates and \rightarrow_{R}^{+}is therefore a reduction ordering.
Assume that \rightarrow_{R} were contained in a simplification ordering \succ. Then $f(f(x)) \rightarrow_{R}$ $f(g(f(x)))$ implies $f(f(x)) \succ f(g(f(x)))$, and $f(g(f(x))) \unrhd_{\text {emb }} f(f(x))$ implies $f(g(f(x))) \succeq$ $f(f(x))$, hence $f(f(x)) \succ f(f(x))$.

Path Orderings

Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω.

The lexicographic path ordering $\succ_{\text {lpo }}$ on $\mathrm{T}_{\Sigma}(X)$ induced by \succ is defined by: $s \succ_{\text {lpo }} t$ iff
(1) $t \in \operatorname{var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(a) $s_{i} \succeq_{\text {lpo }} t$ for some i, or
(b) $f \succ g$ and $s \succ_{\text {lpo }} t_{j}$ for all j, or
(c) $f=g, s \succ_{\text {lpo }} t_{j}$ for all j, and $\left(s_{1}, \ldots, s_{m}\right)\left(\succ_{\text {lpo }}\right)_{\text {lex }}\left(t_{1}, \ldots, t_{n}\right)$.

Lemma $4.28 s \succ_{\text {lpo }} t$ implies $\operatorname{var}(s) \supseteq \operatorname{var}(t)$.

Proof. By induction on $|s|+|t|$ and case analysis.

Theorem $4.29 \succ_{\text {lpo }}$ is a simplification ordering on $\mathrm{T}_{\Sigma}(X)$.

Proof. Show transitivity, subterm property, stability under substitutions, compatibility with Σ-operations, and irreflexivity, usually by induction on the sum of the term sizes and case analysis. Details: Baader and Nipkow, page 119/120.

Theorem 4.30 If the precedence \succ is total, then the lexicographic path ordering \succ_{lpo} is total on ground terms, i. e., for all $s, t \in \mathrm{~T}_{\Sigma}(\emptyset): s \succ_{\mathrm{lpo}} t \vee t \succ_{\mathrm{lpo}} s \vee s=t$.

Proof. By induction on $|s|+|t|$ and case analysis.

Recapitulation:
Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω. The lexicographic path ordering $\succ_{\text {lpo }}$ on $\mathrm{T}_{\Sigma}(X)$ induced by \succ is defined by: $s \succ_{\text {lpo }} t$ iff
(1) $t \in \operatorname{var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(a) $s_{i} \succeq_{\text {lpo }} t$ for some i, or
(b) $f \succ g$ and $s \succ_{\text {lpo }} t_{j}$ for all j, or
(c) $f=g, s \succ_{\text {lpo }} t_{j}$ for all j, and $\left(s_{1}, \ldots, s_{m}\right)\left(\succ_{\text {lpo }}\right)_{\text {lex }}\left(t_{1}, \ldots, t_{n}\right)$.

There are several possibilities to compare subterms in (2)(c):

- compare list of subterms lexicographically left-to-right ("lexicographic path ordering (lpo)", Kamin and Lévy)
- compare list of subterms lexicographically right-to-left (or according to some permutation π)
- compare multiset of subterms using the multiset extension ("multiset path ordering (mpo)", Dershowitz)
- to each function symbol f with $\operatorname{arity}(n) \geq 1$ associate a status $\in\{m u l\} \cup\left\{l e x_{\pi} \mid\right.$ $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}\}$ and compare according to that status ("recursive path ordering (rpo) with status")

The Knuth-Bendix Ordering

Let $\Sigma=(\Omega, \Pi)$ be a finite signature, let \succ be a strict partial ordering ("precedence") on Ω, let $w: \Omega \cup X \rightarrow \mathbb{R}_{0}^{+}$be a weight function, such that the following admissibility conditions are satisfied:
$w(x)=w_{0} \in \mathbb{R}^{+}$for all variables $x \in X ; w(c) \geq w_{0}$ for all constants $c \in \Omega$.
If $w(f)=0$ for some $f \in \Omega$ with $\operatorname{arity}(f)=1$, then $f \succeq g$ for all $g \in \Omega$.
The weight function w can be extended to terms as follows:

$$
w(t)=\sum_{x \in \operatorname{var}(t)} w(x) \cdot \#(x, t)+\sum_{f \in \Omega} w(f) \cdot \#(f, t) .
$$

The Knuth-Bendix ordering $\succ_{\text {kbo }}$ on $\mathrm{T}_{\Sigma}(X)$ induced by \succ and w is defined by: $s \succ_{\text {kbo }} t$ iff
(1) $\#(x, s) \geq \#(x, t)$ for all variables x and $w(s)>w(t)$, or
(2) $\#(x, s) \geq \#(x, t)$ for all variables $x, w(s)=w(t)$, and
(a) $t=x, s=f^{n}(x)$ for some $n \geq 1$, or
(b) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and $f \succ g$, or
(c) $s=f\left(s_{1}, \ldots, s_{m}\right), t=f\left(t_{1}, \ldots, t_{m}\right)$, and $\left(s_{1}, \ldots, s_{m}\right)\left(\succ_{\mathrm{kbo}}\right)_{\mathrm{lex}}\left(t_{1}, \ldots, t_{m}\right)$.

Theorem 4.31 The Knuth-Bendix ordering induced by \succ and w is a simplification ordering on $\mathrm{T}_{\Sigma}(X)$.

Proof. Baader and Nipkow, pages 125-129.

Remark

If $\Pi \neq \emptyset$, then all the term orderings described in this section can also be used to compare non-equational atoms by treating predicate symbols like function symbols.

