## 4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.
In principle, problems in first-order logic with equality can be handled by any prover for first-order logic without equality:

### 4.1 Handling Equality Naively

Proposition 4.1 Let $F$ be a closed first-order formula with equality. Let $\sim \notin \Pi$ be a new predicate symbol. The set $E q(\Sigma)$ contains the formulas

$$
\begin{gathered}
\forall x(x \sim x) \\
\forall x, y(x \sim y \rightarrow y \sim x) \\
\forall x, y, z(x \sim y \wedge y \sim z \rightarrow x \sim z) \\
\forall \vec{x}, \vec{y}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{n} \sim y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)\right) \\
\forall \vec{x}, \vec{y}\left(x_{1} \sim y_{1} \wedge \cdots \wedge x_{m} \sim y_{m} \wedge p\left(x_{1}, \ldots, x_{m}\right) \rightarrow p\left(y_{1}, \ldots, y_{m}\right)\right)
\end{gathered}
$$

for every $f \in \Omega$ and $p \in \Pi$. Let $\tilde{F}$ be the formula that one obtains from $F$ if every occurrence of $\approx$ is replaced by $\sim$. Then $F$ is satisfiable if and only if $E q(\Sigma) \cup\{\tilde{F}\}$ is satisfiable.

Proof. Let $\Sigma=(\Omega, \Pi)$, let $\Sigma_{1}=(\Omega, \Pi \cup\{\sim\})$.
For the "only if" part assume that $F$ is satisfiable and let $\mathcal{A}$ be a $\Sigma$-model of $F$. Then we define a $\Sigma_{1}$-algebra $\mathcal{B}$ in such a way that $\mathcal{B}$ and $\mathcal{A}$ have the same universe, $f_{\mathcal{B}}=f_{\mathcal{A}}$ for every $f \in \Omega, p_{\mathcal{B}}=p_{\mathcal{A}}$ for every $p \in \Pi$, and $\sim_{\mathcal{B}}$ is the identity relation on the universe. It is easy to check that $\mathcal{B}$ is a model of both $\tilde{F}$ and of $E q(\Sigma)$.

The proof of the "if" part consists of two steps.
Assume that the $\Sigma_{1}$-algebra $\mathcal{B}=\left(U_{\mathcal{B}},\left(f_{\mathcal{B}}: U^{n} \rightarrow U\right)_{f \in \Omega},\left(p_{\mathcal{B}} \subseteq U_{\mathcal{B}}^{m}\right)_{p \in \Pi \cup\{\sim\}}\right)$ is a model of $E q(\Sigma) \cup\{\tilde{F}\}$. In the first step, we can show that the interpretation $\sim_{\mathcal{B}}$ of $\sim$ in $\mathcal{B}$ is a congruence relation. We will prove this for the symmetry property, the other properties of congruence relations, that is, reflexivity, transitivity, and congruence with respect to functions and predicates are shown analogously. Let $a, a^{\prime} \in U_{\mathcal{B}}$ such that $a \sim_{\mathcal{B}} a^{\prime}$. We have to show that $a^{\prime} \sim_{\mathcal{B}} a$. Since $\mathcal{B}$ is a model of $E q(\Sigma), \mathcal{B}(\beta)(\forall x, y(x \sim y \rightarrow y \sim x))=1$ for every $\beta$, hence $\mathcal{B}\left(\beta\left[x \mapsto b_{1}, y \mapsto b_{2}\right]\right)(x \sim y \rightarrow y \sim x)=1$ for every $\beta$ and every $b_{1}, b_{2} \in U_{\mathcal{B}}$. Set $b_{1}=a$ and $b_{2}=a^{\prime}$, then $1=\mathcal{B}\left(\beta\left[x \mapsto a, y \mapsto a^{\prime}\right]\right)(x \sim y \rightarrow y \sim x)=$ $\left(a \sim_{\mathcal{B}} a^{\prime} \rightarrow a^{\prime} \sim_{\mathcal{B}} a\right)$, and since $a \sim_{\mathcal{B}} a^{\prime}$ holds by assumption, $a^{\prime} \sim_{\mathcal{B}} a$ must also hold.

In the second step, we will now construct a $\Sigma$-algebra $\mathcal{A}$ from $\mathcal{B}$ and the congruence relation $\sim_{\mathcal{B}}$. Let $[a]$ be the congruence class of an element $a \in U_{\mathcal{B}}$ with respect to $\sim_{\mathcal{B}}$. The universe $U_{\mathcal{A}}$ of $\mathcal{A}$ is the set $\left\{[a] \mid a \in U_{\mathcal{B}}\right\}$ of congruence classes of the universe of $\mathcal{B}$. For a function symbol $f \in \Omega$, we define $f_{\mathcal{A}}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right)=\left[f_{\mathcal{B}}\left(a_{1}, \ldots, a_{n}\right)\right]$, and for a predicate
symbol $p \in \Pi$, we define $\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right) \in p_{\mathcal{A}}$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in p_{\mathcal{B}}$. Observe that this is well-defined: If we take different representatives of the same congruence class, we get the same result by congruence of $\sim_{\mathcal{B}}$. Now for every $\Sigma$-term $t$ and every $\mathcal{B}$-assignment $\beta,[\mathcal{B}(\beta)(t)]=\mathcal{A}(\gamma)(t)$, where $\gamma$ is the $\mathcal{A}$-assignment that maps every variable $x$ to $[\beta(x)]$, and analogously for every $\Sigma$-formula $G, \mathcal{B}(\beta)(\tilde{G})=\mathcal{A}(\gamma)(G)$. Both properties can easily shown by structural induction. Consequently, $\mathcal{A}$ is a model of $F$.

By giving the equality axioms explicitly, first-order problems with equality can in principle be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence axioms).

Equality is theoretically difficult: First-order functional programming is Turing-complete.
But: resolution theorem provers cannot even solve equational problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the theorem prover.

## Roadmap

How to proceed:

- This semester: Equations (unit clauses with equality)

Term rewrite systems
Expressing semantic consequence syntactically
Knuth-Bendix-Completion
Entailment for equations

- Next semester: Equational clauses

Combining resolution and KB-completion $\rightarrow$ Superposition
Entailment for clauses with equality

### 4.2 Rewrite Systems

Let $E$ be a set of (implicitly universally quantified) equations.
The rewrite relation $\rightarrow_{E} \subseteq \mathrm{~T}_{\Sigma}(X) \times \mathrm{T}_{\Sigma}(X)$ is defined by
$s \rightarrow_{E} t$ iff there exist $(l \approx r) \in E, p \in \operatorname{pos}(s)$,
and $\sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X)$,
such that $s / p=l \sigma$ and $t=s[r \sigma]_{p}$.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expression). Contracting a redex means replacing it with the corresponding instance of the rhs (right-hand side) of the rule.
An equation $l \approx r$ is also called a rewrite rule, if $l$ is not a variable and $\operatorname{var}(l) \supseteq \operatorname{var}(r)$.
Notation: $l \rightarrow r$.
A set of rewrite rules is called a term rewrite system (TRS).
We say that a set of equations $E$ or a TRS $R$ is terminating, if the rewrite relation $\rightarrow_{E}$ or $\rightarrow_{R}$ has this property.
(Analogously for other properties of abstract reduction systems).
Note: If $E$ is terminating, then it is a TRS.

## E-Algebras

Let $E$ be a set of universally quantified equations. A model of $E$ is also called an E-algebra.

If $E \models \forall \vec{x}(s \approx t)$, i. e., $\forall \vec{x}(s \approx t)$ is valid in all $E$-algebras, we write this also as $s \approx_{E} t$.
Goal:
Use the rewrite relation $\rightarrow_{E}$ to express the semantic consequence relation syntactically:

$$
s \approx_{E} t \text { if and only if } s \leftrightarrow_{E}^{*} t .
$$

Let $E$ be a set of equations over $\mathrm{T}_{\Sigma}(X)$. The following inference system allows to derive consequences of $E$ :

$$
\begin{array}{ll}
E \vdash t \approx t & \text { (Reflexivity) } \\
\frac{E \vdash t \approx t^{\prime}}{E \vdash t^{\prime} \approx t} \\
\frac{E \vdash t \approx t^{\prime}}{E \vdash t \approx t^{\prime \prime}} & \text { (Symmetry) } \\
\frac{E \vdash t_{1} \approx t_{1}^{\prime} \quad \ldots \quad E \vdash t_{n} \approx t_{n}^{\prime}}{E \vdash f\left(t_{1}, \ldots, t_{n}\right) \approx f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)} & \text { (Transitivity) } \\
E \vdash t \sigma \approx t^{\prime} \sigma & \text { (Congruence) } \\
\quad \text { if }\left(t \approx t^{\prime}\right) \in E \text { and } \sigma: X \rightarrow \mathrm{~T}_{\Sigma}(X) & \text { (Instance) }
\end{array}
$$

Lemma 4.2 The following properties are equivalent:
(i) $s \leftrightarrow_{E}^{*} t$
(ii) $E \vdash s \approx t$ is derivable.

Proof. (i) $\Rightarrow$ (ii): $s \leftrightarrow_{E} t$ implies $E \vdash s \approx t$ by induction on the depth of the position where the rewrite rule is applied; then $s \leftrightarrow_{E}^{*} t$ implies $E \vdash s \approx t$ by induction on the number of rewrite steps in $s \leftrightarrow_{E}^{*} t$.
$($ ii $) \Rightarrow(\mathrm{i})$ : By induction on the size (number of symbols) of the derivation for $E \vdash s \approx t$.

Constructing a quotient algebra:
Let $X$ be a set of variables.
For $t \in \mathrm{~T}_{\Sigma}(X)$ let $[t]=\left\{t^{\prime} \in \mathrm{T}_{\Sigma}(X) \mid E \vdash t \approx t^{\prime}\right\}$ be the congruence class of $t$.
Define a $\Sigma$-algebra $\mathrm{T}_{\Sigma}(X) / E$ (abbreviated by $\mathcal{T}$ ) as follows:

$$
\begin{aligned}
& U_{\mathcal{T}}=\left\{[t] \mid t \in \mathrm{~T}_{\Sigma}(X)\right\} . \\
& f_{\mathcal{T}}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)=\left[f\left(t_{1}, \ldots, t_{n}\right)\right] \text { for } f \in \Omega .
\end{aligned}
$$

Lemma 4.3 $f_{\mathcal{T}}$ is well-defined: If $\left[t_{i}\right]=\left[t_{i}^{\prime}\right]$, then $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=\left[f\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)\right]$.
Proof. Follows directly from the Congruence rule for $\vdash$.

Lemma $4.4 \mathcal{T}=\mathrm{T}_{\Sigma}(X) / E$ is an $E$-algebra.

Proof. Let $\forall x_{1} \ldots x_{n}(s \approx t)$ be an equation in $E$; let $\beta$ be an arbitrary assignment.
We have to show that $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t))=1$, or equivalently, that $\mathcal{T}(\gamma)(s)=\mathcal{T}(\gamma)(t)$ for all $\gamma=\beta\left[x_{i} \mapsto\left[t_{i}\right] \mid 1 \leq i \leq n\right]$ with $\left[t_{i}\right] \in U_{\mathcal{T}}$.
Let $\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$, then $s \sigma \in \mathcal{T}(\gamma)(s)$ and $t \sigma \in \mathcal{T}(\gamma)(t)$.
By the Instance rule, $E \vdash s \sigma \approx t \sigma$ is derivable, hence $\mathcal{T}(\gamma)(s)=[s \sigma]=[t \sigma]=\mathcal{T}(\gamma)(t)$.

Lemma 4.5 Let $X$ be a countably infinite set of variables; let $s, t \in \mathrm{~T}_{\Sigma}(X)$. If $\mathrm{T}_{\Sigma}(X) / E \models \forall \vec{x}(s \approx t)$, then $E \vdash s \approx t$ is derivable.

Proof. Assume that $\mathcal{T} \models \forall \vec{x}(s \approx t)$, i.e., $\mathcal{T}(\beta)(\forall \vec{x}(s \approx t))=1$. Consequently, $\mathcal{T}(\gamma)(s)=\mathcal{T}(\gamma)(t)$ for all $\gamma=\beta\left[x_{i} \mapsto\left[t_{i}\right] \mid 1 \leq i \leq n\right]$ with $\left[t_{i}\right] \in U_{\mathcal{T}}$.
Choose $t_{i}=x_{i}$, then $[s]=\mathcal{T}(\gamma)(s)=\mathcal{T}(\gamma)(t)=[t]$, so $E \vdash s \approx t$ is derivable by definition of $\mathcal{T}$.

Theorem 4.6 ("Birkhoff's Theorem") Let $X$ be a countably infinite set of variables, let $E$ be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in \mathrm{~T}_{\Sigma}(X)$ :
(i) $s \leftrightarrow_{E}^{*} t$.
(ii) $E \vdash s \approx t$ is derivable.
(iii) $s \approx_{E} t$, i.e., $E \models \forall \vec{x}(s \approx t)$.
(iv) $\mathrm{T}_{\Sigma}(X) / E \models \forall \vec{x}(s \approx t)$.

Proof. (i) $\Leftrightarrow$ (ii): Lemma 4.2.
(ii) $\Rightarrow$ (iii): By induction on the size of the derivation for $E \vdash s \approx t$.
(iii) $\Rightarrow$ (iv): Obvious, since $\mathcal{T}=\mathrm{T}_{\Sigma}(X) / E$ is an $E$-algebra.
$($ iv $) \Rightarrow$ (ii): Lemma 4.5.

## Universal Algebra

$\mathrm{T}_{\Sigma}(X) / E=\mathrm{T}_{\Sigma}(X) / \approx_{E}=\mathrm{T}_{\Sigma}(X) / \leftrightarrow_{E}^{*}$ is called the free $E$-algebra with generating set $X / \approx_{E}=\{[x] \mid x \in X\}:$

Every mapping $\varphi: X / \approx_{E} \rightarrow \mathcal{B}$ for some $E$-algebra $\mathcal{B}$ can be extended to a homomorphism $\hat{\varphi}: \mathrm{T}_{\Sigma}(X) / E \rightarrow \mathcal{B}$.
$\mathrm{T}_{\Sigma}(\emptyset) / E=\mathrm{T}_{\Sigma}(\emptyset) / \approx_{E}=\mathrm{T}_{\Sigma}(\emptyset) / \leftrightarrow_{E}^{*}$ is called the initial $E$-algebra.
$\approx_{E}=\{(s, t) \mid E \models s \approx t\}$ is called the equational theory of $E$.
$\approx_{E}^{I}=\left\{(s, t) \mid \mathrm{T}_{\Sigma}(\emptyset) / E \models s \approx t\right\}$ is called the inductive theory of $E$.
Example:
Let $E=\{\forall x(x+0 \approx x), \forall x \forall y(x+s(y) \approx s(x+y))\}$. Then $x+y \approx_{E}^{I} y+x$, but $x+y \not \nsim E_{E} y+x$.

### 4.3 Confluence

Let $(A, \rightarrow)$ be an abstract reduction system.
$b$ and $c \in A$ are joinable, if there is a $a$ such that $b \rightarrow^{*} a \leftarrow^{*} c$.
Notation: $b \downarrow c$.
The relation $\rightarrow$ is called
Church-Rosser, if $b \leftrightarrow^{*} c$ implies $b \downarrow c$.
confluent, if $b \leftarrow^{*} a \rightarrow^{*} c$ implies $b \downarrow c$.
locally confluent, if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$.
convergent, if it is confluent and terminating.

Theorem 4.7 The following properties are equivalent:
(i) $\rightarrow$ has the Church-Rosser property.
(ii) $\rightarrow$ is confluent.

Proof. (i) $\Rightarrow$ (ii): trivial.
$($ ii $) \Rightarrow(\mathrm{i})$ : by induction on the number of peaks in the derivation $b \leftrightarrow^{*} c$.

Lemma 4.8 If $\rightarrow$ is confluent, then every element has at most one normal form.

Proof. Suppose that some element $a \in A$ has normal forms $b$ and $c$, then $b \leftarrow^{*} a \rightarrow^{*} c$. If $\rightarrow$ is confluent, then $b \rightarrow^{*} d \leftarrow^{*} c$ for some $d \in A$. Since $b$ and $c$ are normal forms, both derivations must be empty, hence $b \rightarrow^{0} d \leftarrow^{0} c$, so $b, c$, and $d$ must be identical.

Corollary 4.9 If $\rightarrow$ is normalizing and confluent, then every element $b$ has a unique normal form.

Proposition 4.10 If $\rightarrow$ is normalizing and confluent, then $b \leftrightarrow^{*} c$ if and only if $b \downarrow=c \downarrow$.

Proof. Either using Thm. 4.7 or directly by induction on the length of the derivation of $b \leftrightarrow^{*} c$.

## Confluence and Local Confluence

Theorem 4.11 ("Newman's Lemma") If a terminating relation $\rightarrow$ is locally confluent, then it is confluent.

Proof. Let $\rightarrow$ be a terminating and locally confluent relation. Then $\rightarrow^{+}$is a wellfounded ordering. Define $P(a) \Leftrightarrow\left(\forall b, c: b \leftarrow^{*} a \rightarrow^{*} c \Rightarrow b \downarrow c\right)$.

We prove $P(a)$ for all $a \in A$ by well-founded induction over $\rightarrow^{+}$:
Case 1: $b \leftarrow^{0} a \rightarrow^{*} c$ : trivial.
Case 2: $b \leftarrow^{*} a \rightarrow^{0} c$ : trivial.
Case 3: $b \leftarrow^{*} b^{\prime} \leftarrow a \rightarrow c^{\prime} \rightarrow^{*} c$ : use local confluence, then use the induction hypothesis.

## Rewrite Relations

Corollary 4.12 If $E$ is convergent (i.e., terminating and confluent), then $s \approx_{E} t$ if and only if $s \leftrightarrow_{E}^{*} t$ if and only if $s \downarrow_{E}=t \downarrow_{E}$.

Corollary 4.13 If $E$ is finite and convergent, then $\approx_{E}$ is decidable.

Reminder:
If $E$ is terminating, then it is confluent if and only if it is locally confluent.
Problems:
Show local confluence of $E$.
Show termination of $E$.
Transform $E$ into an equivalent set of equations that is locally confluent and terminating.

### 4.4 Critical Pairs

Showing local confluence (Sketch):
Problem: If $t_{1} \leftarrow_{E} t_{0} \rightarrow_{E} t_{2}$, does there exist a term $s$ such that $t_{1} \rightarrow_{E}^{*} s \leftarrow_{E}^{*} t_{2}$ ?
If the two rewrite steps happen in different subtrees (disjoint redexes): yes.
If the two rewrite steps happen below each other (overlap at or below a variable position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further investigation.

Question:
Are there rewrite rules $l_{1} \rightarrow r_{1}$ and $l_{2} \rightarrow r_{2}$ such that some subterm $l_{1} / p$ and $l_{2}$ have a common instance $\left(l_{1} / p\right) \sigma_{1}=l_{2} \sigma_{2}$ ?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then only a single substitution is necessary: $\left(l_{1} / p\right) \sigma=l_{2} \sigma$.

Further observation:
The mgu of $l_{1} / p$ and $l_{2}$ subsumes all unifiers $\sigma$ of $l_{1} / p$ and $l_{2}$.
Let $l_{i} \rightarrow r_{i}(i=1,2)$ be two rewrite rules in a TRS $R$ whose variables have been renamed such that $\operatorname{var}\left(l_{1}\right) \cap \operatorname{var}\left(l_{2}\right)=\emptyset$. (Remember that $\operatorname{var}\left(l_{i}\right) \supseteq \operatorname{var}\left(r_{i}\right)$.)

Let $p \in \operatorname{pos}\left(l_{1}\right)$ be a position such that $l_{1} / p$ is not a variable and $\sigma$ is an mgu of $l_{1} / p$ and $l_{2}$.

Then $r_{1} \sigma \leftarrow l_{1} \sigma \rightarrow\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
$\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is called a critical pair of $R$.
The critical pair is joinable (or: converges), if $r_{1} \sigma \downarrow_{R}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.

Theorem 4.14 ("Critical Pair Theorem") A TRS $R$ is locally confluent if and only if all its critical pairs are joinable.

Proof. "only if": obvious, since joinability of a critical pair is a special case of local confluence.
"if": Suppose $s$ rewrites to $t_{1}$ and $t_{2}$ using rewrite rules $l_{i} \rightarrow r_{i} \in R$ at positions $p_{i} \in \operatorname{pos}(s)$, where $i=1,2$. Without loss of generality, we can assume that the two rules are variable disjoint, hence $s / p_{i}=l_{i} \theta$ and $t_{i}=s\left[r_{i} \theta\right]_{p_{i}}$.

We distinguish between two cases: Either $p_{1}$ and $p_{2}$ are in disjoint subtrees $\left(p_{1} \| p_{2}\right)$, or one is a prefix of the other (w.o.l.o.g., $p_{1} \leq p_{2}$ ).

Case 1: $p_{1} \| p_{2}$.
Then $s=s\left[l_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$, and therefore $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}\left[l_{2} \theta\right]_{p_{2}}$ and $t_{2}=s\left[l_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$.
Let $t_{0}=s\left[r_{1} \theta\right]_{p_{1}}\left[r_{2} \theta\right]_{p_{2}}$. Then clearly $t_{1} \rightarrow_{R} t_{0}$ using $l_{2} \rightarrow r_{2}$ and $t_{2} \rightarrow_{R} t_{0}$ using $l_{1} \rightarrow r_{1}$.

Case 2: $p_{1} \leq p_{2}$.
Case 2.1: $p_{2}=p_{1} q_{1} q_{2}$, where $l_{1} / q_{1}$ is some variable $x$.
In other words, the second rewrite step takes place at or below a variable in the first rule. Suppose that $x$ occurs $m$ times in $l_{1}$ and $n$ times in $r_{1}$ (where $m \geq 1$ and $n \geq 0$ ).
Then $t_{1} \rightarrow_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q^{\prime} q_{2}$, where $q^{\prime}$ is a position of $x$ in $r_{1}$.

Conversely, $t_{2} \rightarrow_{R}^{*} t_{0}$ by applying $l_{2} \rightarrow r_{2}$ at all positions $p_{1} q q_{2}$, where $q$ is a position of $x$ in $l_{1}$ different from $q_{1}$, and by applying $l_{1} \rightarrow r_{1}$ at $p_{1}$ with the substitution $\theta^{\prime}$, where $\theta^{\prime}=\theta\left[x \mapsto(x \theta)\left[r_{2} \theta\right]_{q_{2}}\right]$.

Case 2.2: $p_{2}=p_{1} p$, where $p$ is a non-variable position of $l_{1}$.
Then $s / p_{2}=l_{2} \theta$ and $s / p_{2}=\left(s / p_{1}\right) / p=\left(l_{1} \theta\right) / p=\left(l_{1} / p\right) \theta$, so $\theta$ is a unifier of $l_{2}$ and $l_{1} / p$.

Let $\sigma$ be the mgu of $l_{2}$ and $l_{1} / p$, then $\theta=\tau \circ \sigma$ and $\left\langle r_{1} \sigma,\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right\rangle$ is a critical pair.
By assumption, it is joinable, so $r_{1} \sigma \rightarrow_{R}^{*} v \leftarrow_{R}^{*}\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}$.
Consequently, $t_{1}=s\left[r_{1} \theta\right]_{p_{1}}=s\left[r_{1} \sigma \tau\right]_{p_{1}} \rightarrow_{R}^{*} s[v \tau]_{p_{1}}$ and $t_{2}=s\left[r_{2} \theta\right]_{p_{2}}=s\left[\left(l_{1} \theta\right)\left[r_{2} \theta\right]_{p}\right]_{p_{1}}=$ $s\left[\left(l_{1} \sigma \tau\right)\left[r_{2} \sigma \tau\right]_{p}\right]_{p_{1}}=s\left[\left(\left(l_{1} \sigma\right)\left[r_{2} \sigma\right]_{p}\right) \tau\right]_{p_{1}} \rightarrow_{R}^{*} s[v \tau]_{p_{1}}$.
This completes the proof of the Critical Pair Theorem.
Note: Critical pairs between a rule and (a renamed variant of) itself must be considered - except if the overlap is at the root (i.e., $p=\varepsilon$ ).

Corollary 4.15 A terminating TRS $R$ is confluent if and only if all its critical pairs are joinable.

Proof. By Newman's Lemma and the Critical Pair Theorem.

Corollary 4.16 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is at most one critical pair $\left\langle u_{1}, u_{2}\right\rangle$.

Reduce every $u_{i}$ to some normal form $u_{i}^{\prime}$. If $u_{1}^{\prime}=u_{2}^{\prime}$ for every critical pair, then $R$ is confluent, otherwise there is some non-confluent situation $u_{1}^{\prime} \leftarrow_{R}^{*} u_{1} \leftarrow_{R} s \rightarrow_{R} u_{2} \rightarrow_{R}^{*} u_{2}^{\prime}$.

