3.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

 $(F_1,\ldots,F_n,F_{n+1}),\ n\geq 0,$

called *inferences*, and written

$$\underbrace{\frac{F_1 \dots F_n}{F_{n+1}}}_{\text{conclusion}}$$

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures

Proofs

A proof in Γ of a formula F from a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

- (i) $F_k = F$,
- (ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference

$$\frac{F_{i_1} \ \dots \ F_{i_{n_i}}}{F_i}$$

in Γ , such that $0 \leq i_j < i$, for $1 \leq j \leq n_i$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ : $N \vdash_{\Gamma} F$: \Leftrightarrow there exists a proof Γ of F from N.

 Γ is called *sound* : \Leftrightarrow

$$\frac{F_1 \ \dots \ F_n}{F} \in \Gamma \quad \Rightarrow \quad F_1, \dots, F_n \models F$$

 Γ is called *complete* : \Leftrightarrow

 $N \models F \Rightarrow N \vdash_{\Gamma} F$

 Γ is called refutationally complete $\ :\Leftrightarrow$

$$N \models \bot \Rightarrow N \vdash_{\Gamma} \bot$$

Proposition 3.14

- (i) Let Γ be sound. Then $N \vdash_{\Gamma} F \Rightarrow N \models F$
- (ii) $N \vdash_{\Gamma} F \Rightarrow$ there exist finitely many clauses $F_1, \ldots, F_n \in N$ such that $F_1, \ldots, F_n \vdash_{\Gamma} F$

Proofs as Trees

 $\begin{array}{rcl} \mathrm{markings} & \widehat{=} & \mathrm{formulas} \\ \mathrm{leaves} & \widehat{=} & \mathrm{assumptions} \ \mathrm{and} \ \mathrm{axioms} \\ \mathrm{other} \ \mathrm{nodes} & \widehat{=} & \mathrm{inferences:} \ \ \mathrm{conclusion} \ \ \widehat{=} & \mathrm{ancestor} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$

3.9 Propositional Resolution

We observe that propositional clauses and ground clauses are essentially the same. In this section we only deal with ground clauses.

The Resolution Calculus Res

Resolution inference rule:

$$\frac{D \lor A \quad \neg A \lor C}{D \lor C}$$

Terminology: $D \lor C$: resolvent; A: resolved atom

(Positive) factorisation inference rule:

$$\frac{C \lor A \lor A}{C \lor A}$$

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, by ground clauses and ground atoms, respectively, we obtain an inference.

We treat " \vee " as associative and commutative, hence A and $\neg A$ can occur anywhere in the clauses; moreover, when we write $C \lor A$, etc., this includes unit clauses, that is, $C = \bot$.

Sample Refutation

1.	$\neg P(f(c)) \lor \neg P(f(c)) \lor Q(b)$	(given)
2.	$P(f(c)) \lor Q(b)$	(given)
3.	$\neg P(g(b,c)) \lor \neg Q(b)$	(given)
4.	P(g(b,c))	(given)
5.	$\neg P(f(c)) \lor Q(b) \lor Q(b)$	(Res. 2. into 1.)
6.	$\neg P(f(c)) \lor Q(b)$	(Fact. $5.$)
7.	$Q(b) \lor Q(b)$	(Res. 2. into 6.)
8.	Q(b)	(Fact. 7.)
9.	$\neg P(g(b,c))$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Resolution with Implicit Factorization *RIF*

Factorization can be included in the resolution rule:

$$\frac{D \lor A \lor \ldots \lor A}{D \lor C}$$

Sample refutation for RIF:

1.	$\neg P(f(c)) \lor \neg P(f(c)) \lor Q(b)$	(given)
2.	$P(f(c)) \lor Q(b)$	(given)
3.	$\neg P(g(b,c)) \lor \neg Q(b)$	(given)
4.	P(g(b,c))	(given)
5.	$\neg P(f(c)) \lor Q(b) \lor Q(b)$	(Res. 2. into 1.)
6.	$Q(b) \lor Q(b) \lor Q(b)$	(Res. 2. into 5.)
7.	$\neg P(g(b,c))$	(Res. 6. into 3.)
8.	\perp	(Res. 4. into 7.)

Soundness of Resolution

Theorem 3.15 Propositional resolution is sound.

Proof. Let $\mathcal{B} \in \Sigma$ -Alg. To be shown:

- (i) for resolution: $\mathcal{B} \models D \lor A$, $\mathcal{B} \models C \lor \neg A \Rightarrow \mathcal{B} \models D \lor C$
- (ii) for factorization: $\mathcal{B} \models C \lor A \lor A \Rightarrow \mathcal{B} \models C \lor A$

(i): Assume premises are valid in \mathcal{B} . Two cases need to be considered: If $\mathcal{B} \models A$, then $\mathcal{B} \models C$, hence $\mathcal{B} \models D \lor C$. Otherwise, $\mathcal{B} \models \neg A$, then $\mathcal{B} \models D$, and again $\mathcal{B} \models D \lor C$. (ii): even simpler.

Note: In propositional logic (ground clauses) we have:

- 1. $\mathcal{B} \models L_1 \lor \ldots \lor L_n \Leftrightarrow$ there exists $i: \mathcal{B} \models L_i$.
- 2. $\mathcal{B} \models A$ or $\mathcal{B} \models \neg A$.

This does not hold for formulas with variables!