3.6 Getting Small Skolem Functions

A clause set that is better suited for automated theorem proving can be obtained using the following steps:

- produce a negation normal form (NNF)
- apply miniscoping
- rename all variables
- skolemize

Negation Normal Form (NNF)

Apply the rewrite relation \Rightarrow_{NNF} , where F is the overall formula:

$$\begin{array}{lll} G \leftrightarrow H & \Rightarrow_{NNF} & (G \rightarrow H) \land (H \rightarrow G) \\ & & \text{if } F/p = G \leftrightarrow H \text{ has positive polarity in } F \\ G \leftrightarrow H & \Rightarrow_{NNF} & (G \land H) \lor (\neg H \land \neg G) \\ & & \text{if } F/p = G \leftrightarrow H \text{ has negative polarity in } F \\ \neg Qx \, G & \Rightarrow_{NNF} & \overline{Q}x \neg G \\ \neg (G \lor H) & \Rightarrow_{NNF} & \neg G \land \neg H \\ \neg (G \land H) & \Rightarrow_{NNF} & \neg G \lor \neg H \\ G \rightarrow H & \Rightarrow_{NNF} & \neg G \lor H \\ \neg \neg G & \Rightarrow_{NNF} & G \end{array}$$

Miniscoping

Apply the rewrite relation \Rightarrow_{MS} . For the below rules we assume that x occurs freely in G, H, but x does not occur freely in F:

$$\begin{array}{lll} Qx \left(G \land F \right) & \Rightarrow_{MS} & Qx \, G \land F \\ Qx \left(G \lor F \right) & \Rightarrow_{MS} & Qx \, G \lor F \\ \forall x \left(G \land H \right) & \Rightarrow_{MS} & \forall x \, G \land \forall x \, H \\ \exists x \left(G \lor H \right) & \Rightarrow_{MS} & \exists x \, G \lor \exists x \, H \end{array}$$

Variable Renaming

Rename all variables in F such that there are no two different positions p, q with F/p = Qx G and F/q = Q'x H.

Standard Skolemization

Let F be the overall formula, then apply the rewrite rule:

$$\exists x \, H \quad \Rightarrow_{SK} \quad H\{x \mapsto f(y_1, \dots, y_n)\}$$

if $F/p = \exists x \, H$ and p has minimal length,
 $\{y_1, \dots, y_n\}$ are the free variables in $\exists x \, H$,
 f/n is a new function symbol

3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ -algebra \mathcal{A} such that

- $U_{\mathcal{A}} = \mathcal{T}_{\Sigma}$ (= the set of ground terms over Σ)
- $f_{\mathcal{A}}: (s_1, \ldots, s_n) \mapsto f(s_1, \ldots, s_n), f/n \in \Omega$

In other words, values are fixed to be ground terms and functions are fixed to be the term constructors. Only predicate symbols $P/m \in \Pi$ may be freely interpreted as relations $P_{\mathcal{A}} \subseteq T_{\Sigma}^{m}$.

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand interpretation \mathcal{A} via

$$(s_1,\ldots,s_n) \in P_\mathcal{A} \quad :\Leftrightarrow \quad P(s_1,\ldots,s_n) \in I$$

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ -ground atoms.

Example: $\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \{</2, \le/2\})$

 \mathbb{N} as Herbrand interpretation over Σ_{Pres} :

$$I = \{ \begin{array}{ccc} 0 \le 0, \ 0 \le s(0), \ 0 \le s(s(0)), \ \dots, \\ 0 + 0 \le 0, \ 0 + 0 \le s(0), \ \dots, \\ \dots, \ (s(0) + 0) + s(0) \le s(0) + (s(0) + s(0)) \\ \dots \\ s(0) + 0 < s(0) + 0 + 0 + s(0) \\ \dots \} \end{array}$$

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F, if $I \models F$.

Theorem 3.13 (Herbrand) Let N be a set of Σ -clauses.

 $N \text{ satisfiable } \Leftrightarrow N \text{ has a Herbrand model (over } \Sigma)$ $\Leftrightarrow G_{\Sigma}(N) \text{ has a Herbrand model (over } \Sigma)$

where $G_{\Sigma}(N) = \{ C\sigma \text{ ground clause} \mid C \in N, \sigma : X \to T_{\Sigma} \}$ is the set of ground instances of N.

[The proof will be given below in the context of the completeness proof for resolution.]

Example of a G_{Σ}

For Σ_{Pres} one obtains for

 $C = (x < y) \lor (y \le s(x))$

the following ground instances:

 $\begin{array}{l} (0 < 0) \lor (0 \leq s(0)) \\ (s(0) < 0) \lor (0 \leq s(s(0))) \\ \dots \\ (s(0) + s(0) < s(0) + 0) \lor (s(0) + 0 \leq s(s(0) + s(0))) \\ \dots \end{array}$