3.3 Models, Validity, and Satisfiability
Fis valid in A under assignment (3:
ABEF & ARB)F) =1

F is valid in A (A is a model of F):

AEF & ApPBEF forallfe X — Uy
F is valid (or is a tautology):

EF & AETF, foral Ae X-Alg

F is called satisfiable iff there exist .4 and 3 such that A, 5 = F. Otherwise F' is called
unsatisfiable.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Y-algebras
A, assignments 3, and substitutions o.

Lemma 3.3 For any X-term t

A(B)(to) = A(Boo)(t),

where oo : X — A is the assignment (3 o o(z) = A(8)(z0).
Proposition 3.4 For any Y-formula F, A(3)(Fo) = A(f o o)(F).
Corollary 3.5 A, = Fo < A/ foocEF

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.
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Entailment and Equivalence

F entails (implies) G (or G is a consequence of F'), written F' |= G, if for all A € ¥-Alg
and 3 € X — Uy, whenever A, 5 = F, then A, 3 | G.

F and G are called equivalent, written F' H G, if for all A € ¥-Alg und f € X — Uy
we have A, EF & A(BEG.

Proposition 3.6 F entails G iff (F — G) is valid
Proposition 3.7 F' and G are equivalent iff (F < G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N = F

&= forall A€ X-Algand f € X - Uy if A,f G, forall G € N, then A, = F.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.8 Let F' and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if =F is unsatisfiable.
(ii) F = G if and only if F A\ =G is unsatisfiable.
(iii) N = G if and only if N U{—~G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Theory of a Structure

Let A € ¥-Alg. The (first-order) theory of A is defined as
Th(A)={GeFs(X)[AEG}

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write down a formula
F (or a recursively enumerable set F' of formulas) such that

Th(A)={G | F = G1}?

Analogously for sets of structures.
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Two Interesting Theories

Let Xpres = ({0/0,s/1,4/2}, 0) and Z, = (Z,0, s, +) its standard interpretation on the
integers. Th(Z.) is called Presburger arithmetic (M. Presburger, 1929). (There is no
essential difference when one, instead of Z, considers the natural numbers N as standard
interpretation. )

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323-332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
¢ > 0 such that Th(Z,) ¢ NTIME(2*")).

However, N, = (N, 0, s, +, ), the standard interpretation of ¥p4 = ({0/0,s/1,+/2,%/2},0),
has as theory the so-called Peano arithmetic which is undecidable, not even recursively
enumerable.

Note: The choice of signature can make a big difference with regard to the computational
complexity of theories.

3.4 Algorithmic Problems

Validity (F'): [ F ?

Satisfiability(F"): F satisfiable?

Entailment(F,G): does F entail G?

Model(A,F): A E F?

Solve(A,F'): find an assignment 3 such that A, 5 = F.
Solve(F'): find a substitution o such that = Fo.

Abduce(F): find G with “certain properties” such that G = F.

Godel’s Famous Theorems

1. For most signatures >, validity is undecidable for -formulas. (One can easily
encode Turing machines in most signatures.)

2. For each signature 3, the set of valid 3-formulas is recursively enumerable. (We
will prove this by giving complete deduction systems.)

3. For ¥ = ¥py and N, = (N,0, s, +, *), the theory Th(N,) is not recursively enu-
merable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?
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Some Decidable Fragments

Some decidable fragments:

e Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

e Variable-free formulas without equality: satisfiability is NP-complete. (why?)

e Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

e Finite model checking is decidable in time polynomial in the size of the structure
and the formula.

3.5 Normal Forms and Skolemization

Study of normal forms motivated by

e reduction of logical concepts,

e efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

Prenex Normal Form

Prenex formulas have the form

QlfL'l P in‘n F,

where F' is quantifier-free and @; € {V, 3}; we call Q2 ...Q,x, the quantifier prefix
and F' the matrix of the formula.

Computing prenex normal form by the rewrite relation = p:

(F—G) =p (F—=G)NG—F)
“QrF =p Qr-F (—Q)
(QzF) pG) =p Qy(F{r—y}pG), pe{AV}
(QzF) = G) =p Qy(F{z—y} —G),
(F p(QzG)) =p Qu(F pGlz—y}), pe{NV,—}

Here y is always assumed to be some fresh variable and @ denotes the quantifier dual
to @, i.e,V=dand 3=V.

39



Skolemization

Intuition: replacement of dy by a concrete choice function computing y from all the
arguments y depends on.

Transformation =g (to be applied outermost, not in subformulas):
Vo, ..., e, yF =g Yoy, ..., e, F{y— f(z1,...,2,)}

where f/n is a new function symbol (Skolem function).

Together: FF=p G =g H
prenex prenex, no 3

Theorem 3.9 Let F, GG, and H as defined above and closed. Then

(i) F and G are equivalent.
(ii) H = G but the converse is not true in general.
(iii) G satisfiable (w.r.t. ¥-Alg) < H satisfiable (w.r.t. ¥'-Alg) where ¥/ = (Q U

SKF, ), if ¥ = (Q,1I).
Clausal Normal Form (Conjunctive Normal Form)

(F—G) =g (F>GANG—=F)
(F—-G) =k (WFVG)
)

~(FVG) =g (=FA-G)
~(FAG) =g (~FV-G)
-—F =g F
(FANG)VH =g (FVH)AN(GVH)
(FVl1l) =k F

These rules are to be applied modulo associativity and commutativity of A and V.
The first five rules, plus the rule (=Q), compute the negation normal form (NNF) of a
formula.
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The Complete Picture

F =Zp Qwi...Quyn G (G quantifier-free)
=¢ Vri,...,zm H (m <n, H quantifier-free)
— V:Ul,.. , T /\ \/Lm

=1 gj=1
leave out \,_/

clauses C;
g

P
N ={C,...,Cy} is called the clausal (normal) form (CNF) of F.

Note: the variables in the clauses are implicitly universally quantified.
Theorem 3.10 Let F' be closed. Then F' |= F. (The converse is not true in general.)

Theorem 3.11 Let F' be closed. Then F is satisfiable iff F' is satisfiable iff N is
satisfiable

Optimization
The normal form algorithm described so far leaves lots of room for optimization. Note
that we only can preserve satisfiability anyway due to Skolemization.

e size of the CNF is exponential when done naively; the transformations we intro-
duced already for propositional logic avoid this exponential growth;

e we want to preserve the original formula structure;

e we want small arity of Skolem functions (see next section).
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