3.12 Ordered Resolution with Selection

Motivation: Search space for *Res very* large.

Ideas for improvement:

- In the completeness proof (Model Existence Theorem 3.19) one only needs to resolve and factor maximal atoms
 ⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
 ⇒ ordering restrictions
- 2. In the proof, it does not really matter with which negative literal an inference is performed

 \Rightarrow choose a negative literal don't-care-nondeterministically

 \Rightarrow selection

Selection Functions

A selection function is a mapping

 $S: C \mapsto$ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X:

$$\boxed{\neg A} \lor \neg A \lor B$$
$$\boxed{\neg B_0} \lor \boxed{\neg B_1} \lor A$$

Intuition:

- If a clause has at least one selected literal, compute only inferences that involve a selected literal.
- If a clause has no selected literals, compute only inferences that involve a maximal literal.

Resolution Calculus Res_S^{\succ}

The resolution calculus Res_S^{\succ} is parameterized by

- a selection function S
- and a total and well-founded atom ordering \succ .

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly) maximal literals of ground instances:

A literal *L* is called *[strictly] maximal* in a clause *C* if and only if there exists a ground substitution σ such that $L\sigma$ is *[strictly] maximal* in $C\sigma$ (i.e., if for no other *L'* in *C*: $L\sigma \prec L'\sigma [L\sigma \preceq L'\sigma]$).

$$\frac{D \lor B \qquad C \lor \neg A}{(D \lor C)\sigma} \qquad [ordered resolution with selection]$$

if the following conditions are satisfied:

- (i) $\sigma = mgu(A, B);$
- (ii) $B\sigma$ strictly maximal in $D\sigma \vee B\sigma$;
- (iii) nothing is selected in $D \vee B$ by S;
- (iv) either $\neg A$ is selected, or else nothing is selected in $C \lor \neg A$ and $\neg A\sigma$ is maximal in $C\sigma \lor \neg A\sigma$.

$$\frac{C \lor A \lor B}{(C \lor A)\sigma} \qquad \qquad [ordered \ factorization]$$

if the following conditions are satisfied:

- (i) $\sigma = mgu(A, B);$
- (ii) $A\sigma$ is maximal in $C\sigma \lor A\sigma \lor B\sigma$;
- (iii) nothing is selected in $C \lor A \lor B$ by S.

Special Case: Propositional Logic

For ground clauses the resolution inference rule simplifies to

$$\frac{D \lor A \qquad C \lor \neg A}{D \lor C}$$

if the following conditions are satisfied:

- (i) $A \succ D$;
- (ii) nothing is selected in $D \lor A$ by S;
- (iii) $\neg A$ is selected in $C \lor \neg A$, or else nothing is selected in $C \lor \neg A$ and $\neg A \succeq \max(C)$.

Note: For positive literals, $A \succ D$ is the same as $A \succ \max(D)$.

Analogously, the factorization rule simplifies to

$$\frac{C \lor A \lor A}{C \lor A}$$

if the following conditions are satisfied:

- (i) A is the largest literal in $C \lor A \lor A$;
- (ii) nothing is selected in $C \lor A \lor A$ by S.

Search Spaces Become Smaller

$\frac{2}{3}$	$A \lor B$ $A \lor \neg B$ $\neg A \lor B$ $\neg A \lor \nabla B$		we assume $A \succ B$ and S as indicated by X . The maximal literal in a clause is depicted in
$5\\6\\7$	$ \begin{array}{c} \neg A \lor \neg B \\ B \lor B \\ \neg A \\ A \end{array} $	Res 1, 3 Fact 5 Res 6, 4 Res 6, 2	red.
9	\bot	Res 8, 7	

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

Avoiding Rotation Redundancy

From

$$\frac{C_1 \lor A \quad C_2 \lor \neg A \lor B}{\frac{C_1 \lor C_2 \lor B}{C_1 \lor C_2 \lor C_3}} \frac{C_3 \lor \neg B}{C_3 \lor \neg B}$$

we can obtain by rotation

$$\frac{C_1 \vee A}{C_1 \vee C_2 \vee \neg A \vee B} \frac{C_2 \vee \neg A \vee B}{C_2 \vee \neg A \vee C_3} C_1 \vee C_2 \vee C_3}$$

another proof of the same clause. In large proofs many rotations are possible. However, if $A \succ B$, then the second proof does not fulfill the orderings restrictions.

Conclusion: In the presence of orderings restrictions (however one chooses \succ) no rotations are possible. In other words, orderings identify exactly one representant in any class of rotation-equivalent proofs.

Lifting Lemma for Res_S^{\succ}

Lemma 3.36 Let D and C be variable-disjoint clauses. If

$$\begin{array}{ccc} D & C \\ \downarrow \sigma & \downarrow \rho \\ \underline{D\sigma} & \underline{C\rho} \\ \hline C' \end{array} \quad [propositional inference in Res_S^{\succ}] \end{array}$$

and if $S(D\sigma) \simeq S(D)$, $S(C\rho) \simeq S(C)$ (that is, "corresponding" literals are selected), then there exists a substitution τ such that

$$\frac{D \quad C}{C''} \qquad [\text{inference in } Res_S^{\succ}]$$
$$\downarrow \tau$$
$$C' = C''\tau$$

An analogous lifting lemma holds for factorization.

Saturation of General Clause Sets

Corollary 3.37 Let N be a set of general clauses saturated under $\operatorname{Res}_{S}^{\succ}$, i. e., $\operatorname{Res}_{S}^{\succ}(N) \subseteq N$. Then there exists a selection function S' such that $S|_{N} = S'|_{N}$ and $G_{\Sigma}(N)$ is also saturated, i. e.,

 $Res_{S'}^{\succ}(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N).$

Proof. We first define the selection function S' such that S'(C) = S(C) for all clauses $C \in G_{\Sigma}(N) \cap N$. For $C \in G_{\Sigma}(N) \setminus N$ we choose a fixed but arbitrary clause $D \in N$ with $C \in G_{\Sigma}(D)$ and define S'(C) to be those occurrences of literals that are ground instances of the occurrences selected by S in D. Then proceed as in the proof of Cor. 3.29 using the above lifting lemma.

Soundness and Refutational Completeness

Theorem 3.38 Let \succ be an atom ordering and S a selection function such that $Res_S^{\succ}(N) \subseteq N$. Then

 $N\models\bot\Leftrightarrow\bot\in N$

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider first the propositional level: Construct a candidate interpretation I_N as for unrestricted resolution, except that clauses C in N that have selected literals are not productive, even when they are false in I_C and when their maximal atom occurs only once and positively. The result for general clauses follows using Corollary 3.37.

Craig-Interpolation

A theoretical application of ordered resolution is Craig-Interpolation:

Theorem 3.39 (Craig 1957) Let F and G be two propositional formulas such that $F \models G$. Then there exists a formula H (called the interpolant for $F \models G$), such that H contains only prop. variables occurring both in F and in G, and such that $F \models H$ and $H \models G$.

Proof. Translate F and $\neg G$ into CNF. let N and M, resp., denote the resulting clause set. Choose an atom ordering \succ for which the prop. variables that occur in F but not in G are maximal. Saturate N into $N^* \text{ w.r.t. } Res_S^{\succ}$ with an empty selection function S. Then saturate $N^* \cup M$ w.r.t. Res_S^{\succ} to derive \bot . As N^* is already saturated, due to the ordering restrictions only inferences need to be considered where premises, if they are from N^* , only contain symbols that also occur in G. The conjunction of these premises is an interpolant H. The theorem also holds for first-order formulas. For universal formulas the above proof can be easily extended. In the general case, a proof based on resolution technology is more complicated because of Skolemization. \Box

Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses unnecessary? (Conjecture: e.g., if they are tautologies or if they are subsumed by other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor productive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is called *redundant* w.r.t. N, if there exist $C_1, \ldots, C_n \in N$, $n \ge 0$, such that $C_i \prec C$ and $C_1, \ldots, C_n \models C$.

Redundancy for general clauses: C is called *redundant* w.r.t. N, if all ground instances $C\sigma$ of C are redundant w.r.t. $G_{\Sigma}(N)$.

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering \prec is used for ordering restrictions and for redundancy (and for the completeness proof).

Examples of Redundancy

Proposition 3.40 Some redundancy criteria:

- C tautology (i.e., $\models C$) \Rightarrow C redundant w.r.t. any set N.
- $C\sigma \subset D \Rightarrow D$ redundant w.r.t. $N \cup \{C\}$.
- $C\sigma \subseteq D \Rightarrow D \lor \overline{L}\sigma$ redundant w.r.t. $N \cup \{C \lor L, D\}$.

(Under certain conditions one may also use non-strict subsumption, but this requires a slightly more complicated definition of redundancy.)

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. Res_S^{\succ})

 $:\Leftrightarrow Res_S^{\succ}(N \setminus Red(N)) \subseteq N \cup Red(N)$

Theorem 3.41 Let N be saturated up to redundancy. Then

 $N \models \bot \Leftrightarrow \bot \in N$

Proof (Sketch). (i) Ground case:

- $\bullet\,$ consider the construction of the candidate interpretation I_N^\succ for Res_S^\succ
- redundant clauses are not productive
- redundant clauses in N are not minimal counterexamples for I_N^{\succ}

The premises of "essential" inferences are either minimal counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 3.38.

Monotonicity Properties of Redundancy

Theorem 3.42

- (i) $N \subseteq M \Rightarrow Red(N) \subseteq Red(M)$
- (ii) $M \subseteq Red(N) \Rightarrow Red(N) \subseteq Red(N \setminus M)$

We conclude that redundancy is preserved when, during a theorem proving process, one adds (derives) new clauses or deletes redundant clauses. Recall that Red(N) may include clauses that are not in N.