3.10 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \perp \Rightarrow N \vdash_{\text {Res }} \perp$, or equivalently: If $N \nvdash_{\text {Res }} \perp$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived $\perp)$.
- Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.
- The limit interpretation can be shown to be a model of N.

Clause Orderings

1. We assume that \succ is any fixed ordering on ground atoms that is total and wellfounded. (There exist many such orderings, e.g., the lenght-based ordering on atoms when these are viewed as words over a suitable alphabet.)
2. Extend \succ to an ordering \succ_{L} on ground literals:

$$
\begin{array}{ccc}
{[\neg] A} & \succ_{L} & {[\neg] B} \\
\neg A & \succ_{L} & A
\end{array}, \text { if } A \succ B
$$

3. Extend \succ_{L} to an ordering \succ_{C} on ground clauses: $\succ_{C}=\left(\succ_{L}\right)_{\text {mul }}$, the multiset extension of \succ_{L}.
Notation: \succ also for \succ_{L} and \succ_{C}.

Example

Suppose $A_{5} \succ A_{4} \succ A_{3} \succ A_{2} \succ A_{1} \succ A_{0}$. Then:

$$
\begin{array}{lc}
& A_{5} \vee \neg A_{5} \\
\succ & A_{3} \vee \neg A_{4} \\
\succ & \neg A_{1} \vee A_{3} \vee A_{4} \\
\succ & \neg A_{1} \vee A_{2} \\
\succ & A_{1} \vee A_{2} \\
\succ & A_{0} \vee A_{1}
\end{array}
$$

Properties of the Clause Ordering

Proposition 3.16

1. The orderings on literals and clauses are total and well-founded.
2. Let C and D be clauses with $A=\max (C), B=\max (D)$, where $\max (C)$ denotes the maximal atom in C.
(i) If $A \succ B$ then $C \succ D$.
(ii) If $A=B$, A occurs negatively in C but only positively in D, then $C \succ D$.

Stratified Structure of Clause Sets

Let $B \succ A$. Clause sets are then stratified in this form:

Closure of Clause Sets under Res

$$
\left.\begin{array}{rl}
\operatorname{Res}(N) & =\{C \mid C \text { is conclusion of an inference in Res } \\
\quad \text { with premises in } N\}
\end{array}\right\} \begin{aligned}
\operatorname{Res}^{0}(N) & =N \quad \\
\operatorname{Res}^{n+1}(N) & =\operatorname{Res}\left(\operatorname{Res}^{n}(N)\right) \cup \operatorname{Res}^{n}(N), \text { for } n \geq 0 \\
\operatorname{Res}^{*}(N) & =\bigcup_{n \geq 0} \operatorname{Res}^{n}(N)
\end{aligned}
$$

N is called saturated (w.r.t. resolution), if $\operatorname{Res}(N) \subseteq N$.

Proposition 3.17

(i) $\operatorname{Res}^{*}(N)$ is saturated.
(ii) Res is refutationally complete, iff for each set N of ground clauses:

$$
N \models \perp \Leftrightarrow \perp \in \operatorname{Res}^{*}(N)
$$

Construction of Interpretations

Given: set N of ground clauses, atom ordering \succ.
Wanted: Herbrand interpretation I such that

- "many" clauses from N are valid in I;
- $I \models N$, if N is saturated and $\perp \notin N$.

Construction according to \succ, starting with the minimal clause.

Main Ideas of the Construction

- Clauses are considered in the order given by \prec.
- When considering C, one already has a partial interpretation I_{C} (initially $I_{C}=\emptyset$) available.
- If C is true in the partial interpretation I_{C}, nothing is done. $\left(\Delta_{C}=\emptyset\right)$.
- If C is false, one would like to change I_{C} such that C becomes true.
- Changes should, however, be monotone. One never deletes anything from I_{C} and the truth value of clauses smaller than C should be maintained the way it was in I_{C}.
- Hence, one chooses $\Delta_{C}=\{A\}$ if, and only if, C is false in I_{C}, if A occurs positively in C (adding A will make C become true) and if this occurrence in C is strictly maximal in the ordering on literals (changing the truth value of A has no effect on smaller clauses).

Construction of Candidate Interpretations

Let N, \succ be given. We define sets I_{C} and Δ_{C} for all ground clauses C over the given signature inductively over \succ :

$$
\begin{aligned}
I_{C} & :=\bigcup_{C \succ D} \Delta_{D} \\
\Delta_{C} & := \begin{cases}\{A\}, & \text { if } C \in N, C=C^{\prime} \vee A, A \succ C^{\prime}, I_{C} \not \vDash C \\
\emptyset, & \text { otherwise }\end{cases}
\end{aligned}
$$

We say that C produces A, if $\Delta_{C}=\{A\}$.
The candidate interpretation for N (w.r.t. \succ) is given as $I_{N}^{\succ}:=\bigcup_{C} \Delta_{C}$. (We also simply write I_{N} or I for I_{N}^{\succ} if \succ is either irrelevant or known from the context.)

Example

Let $A_{5} \succ A_{4} \succ A_{3} \succ A_{2} \succ A_{1} \succ A_{0}$ (max. literals in red)

	clauses C	I_{C}	Δ_{C}	Remarks
7	$\neg A_{1} \vee A_{5}$	$\left\{A_{1}, A_{2}, A_{4}\right\}$	$\left\{A_{5}\right\}$	
6	$\neg A_{1} \vee A_{3} \vee \neg A_{4}$	$\left\{A_{1}, A_{2}, A_{4}\right\}$	\emptyset	A_{3} not maximal;
				min. counter-ex.
5	$A_{0} \vee \neg A_{1} \vee A_{3} \vee A_{4}$	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{4}\right\}$	A_{4} maximal
4	$\neg A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	A_{2} maximal
3	$A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	\emptyset	true in I_{C}
2	$A_{0} \vee A_{1}$	\emptyset	$\left\{A_{1}\right\}$	A_{1} maximal
1	$\neg A_{0}$	\emptyset	\emptyset	true in I_{C}

$I=\left\{A_{1}, A_{2}, A_{4}, A_{5}\right\}$ is not a model of the clause set
\Rightarrow there exists a counterexample.

Structure of N, \succ

Let $B \succ A$; producing a new atom does not affect smaller clauses.

Some Properties of the Construction

Proposition 3.18

(i) $C=\neg A \vee C^{\prime} \Rightarrow$ no $D \succeq C$ produces A.
(ii) C productive $\Rightarrow I_{C} \cup \Delta_{C} \models C$.
(iii) Let $D^{\prime} \succ D \succeq C$. Then

$$
I_{D} \cup \Delta_{D} \models C \Rightarrow I_{D^{\prime}} \cup \Delta_{D^{\prime}} \models C \text { and } I_{N} \models C .
$$

If, in addition, $C \in N$ or $\max (D) \succ \max (C)$:

$$
I_{D} \cup \Delta_{D} \not \models C \Rightarrow I_{D^{\prime}} \cup \Delta_{D^{\prime}} \not \models C \text { and } I_{N} \not \models C .
$$

(iv) Let $D^{\prime} \succ D \succ C$. Then

$$
I_{D} \models C \Rightarrow I_{D^{\prime}} \models C \text { and } I_{N} \models C .
$$

If, in addition, $C \in N$ or $\max (D) \succ \max (C)$:

$$
I_{D} \not \models C \Rightarrow I_{D^{\prime}} \not \models C \text { and } I_{N} \not \models C
$$

(v) $D=C \vee A$ produces $A \Rightarrow I_{N} \not \vDash C$.

Resolution Reduces Counterexamples

$$
\frac{A_{0} \vee \neg A_{1} \vee A_{3} \vee A_{4} \neg A_{1} \vee A_{3} \vee \neg A_{4}}{A_{0} \vee \neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{3}}
$$

Construction of I for the extended clause set:

clauses C	I_{C}	Δ_{C}	Remarks
$\neg A_{1} \vee A_{5}$	$\left\{A_{1}, A_{2}, A_{4}\right\}$	$\left\{A_{5}\right\}$	
$\neg A_{1} \vee A_{3} \vee \neg A_{4}$	$\left\{A_{1}, A_{2}, A_{4}\right\}$	\emptyset	counterexample
$A_{0} \vee \neg A_{1} \vee A_{3} \vee A_{4}$	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{4}\right\}$	
$A_{0} \vee \neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{3}$	$\left\{A_{1}, A_{2}\right\}$	\emptyset	A_{3} occurs twice
			minimal counter-ex.
$\neg A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	
$A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	\emptyset	
$A_{0} \vee A_{1}$	\emptyset	$\left\{A_{1}\right\}$	
$\neg A_{0}$	\emptyset	\emptyset	

The same I, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

$$
\frac{A_{0} \vee \neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{3}}{A_{0} \vee \neg A_{1} \vee \neg A_{1} \vee A_{3}}
$$

Construction of I for the extended clause set:

clauses C	I_{C}	Δ_{C}	Remarks
$\neg A_{1} \vee A_{5}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$	$\left\{A_{5}\right\}$	
$\neg A_{1} \vee A_{3} \vee \neg A_{4}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$	\emptyset	true in I_{C}
$A_{0} \vee \neg A_{1} \vee A_{3} \vee A_{4}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$	\emptyset	
$A_{0} \vee \neg A_{1} \vee \neg A_{1} \vee A_{3} \vee A_{3}$	$\left\{A_{1}, A_{2}, A_{3}\right\}$	\emptyset	true in I_{C}
$A_{0} \vee \neg A_{1} \vee \neg A_{1} \vee A_{3}$	$\left\{A_{1}, A_{2}\right\}$	$\left\{A_{3}\right\}$	
$\neg A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	$\left\{A_{2}\right\}$	
$A_{1} \vee A_{2}$	$\left\{A_{1}\right\}$	\emptyset	
$A_{0} \vee A_{1}$	\emptyset	$\left\{A_{1}\right\}$	
$\neg A_{0}$	\emptyset	\emptyset	

The resulting $I=\left\{A_{1}, A_{2}, A_{3}, A_{5}\right\}$ is a model of the clause set.

Model Existence Theorem

Theorem 3.19 (Bachmair \& Ganzinger 1990) Let \succ be a clause ordering, let N be saturated w.r.t. Res, and suppose that $\perp \notin N$. Then $I_{N}^{\succ} \models N$.

Corollary 3.20 Let N be saturated w.r.t. Res. Then $N \models \perp \Leftrightarrow \perp \in N$.

Proof of Theorem 3.19. Suppose $\perp \notin N$, but $I_{N}^{\succ} \neq N$. Let $C \in N$ minimal (in \succ) such that $I_{N}^{\succ} \notin C$. Since C is false in I_{N}, C is not productive. As $C \neq \perp$ there exists a maximal atom A in C.

Case 1: $C=\neg A \vee C^{\prime}$ (i. e., the maximal atom occurs negatively)
$\Rightarrow I_{N} \vDash A$ and $I_{N} \not \vDash C^{\prime}$
\Rightarrow some $D=D^{\prime} \vee A \in N$ produces A. Since there is an inference

$$
\frac{D^{\prime} \vee A \quad \neg A \vee C^{\prime}}{D^{\prime} \vee C^{\prime}}
$$

we infer that $D^{\prime} \vee C^{\prime} \in N$, and $C \succ D^{\prime} \vee C^{\prime}$ and $I_{N} \not \vDash D^{\prime} \vee C^{\prime}$. This contradicts the minimality of C.

Case 2: $C=C^{\prime} \vee A \vee A$. There is an inference

$$
\frac{C^{\prime} \vee A \vee A}{C^{\prime} \vee A}
$$

that yields a smaller counterexample $C^{\prime} \vee A \in N$. This contradicts the minimality of C.

Compactness of Propositional Logic

Theorem 3.21 (Compactness) Let N be a set of propositional formulas. Then N is unsatisfiable, if and only if some finite subset $M \subseteq N$ is unsatisfiable.

Proof. " \Leftarrow ": trivial.
$" \Rightarrow$ ": Let N be unsatisfiable.
$\Rightarrow \operatorname{Res}^{*}(N)$ unsatisfiable
$\Rightarrow \perp \in \operatorname{Res}^{*}(N)$ by refutational completeness of resolution
$\Rightarrow \exists n \geq 0: \perp \in \operatorname{Res}^{n}(N)$
$\Rightarrow \perp$ has a finite resolution proof P;
choose M as the set of assumptions in P.

3.11 General Resolution

Propositional resolution:
refutationally complete,
in its most naive version: not guaranteed to terminate for satisfiable sets of clauses, (improved versions do terminate, however)
inferior to the DPLL procedure.
But: in contrast to the DPLL procedure, resolution can be easily extended to non-ground clauses.

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

Problems:

More than one instance of a clause can participate in a proof.
Even worse: There are infinitely many possible instances.
Observation:
Instantiation must produce complementary literals (so that inferences become possible).

Idea:
Do not instantiate more than necessary to get complementary literals.

$$
\begin{aligned}
& P\left(z^{\prime}, z^{\prime}\right) \vee \neg Q(z) \quad \neg P(a, y) \quad P\left(x^{\prime}, b\right) \vee Q\left(f\left(x^{\prime}, x\right)\right) \\
& \left\{z^{\prime} \mapsto a\right\}|\quad\{y \mapsto a\} / \quad\langle y \mapsto b\} \quad|\left\{x^{\prime} \mapsto a\right\} \\
& P(a, a) \vee \neg Q(z) \neg P(a, a) \quad \neg P(a, b) \quad P(a, b) \vee Q(f(a, x)) \\
& \neg Q(z) \\
& \{z \mapsto f(a, x)\} \mid \\
& \neg Q(f(a, x)) \quad Q(f(a, x))
\end{aligned}
$$

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from taking the (ground) instances of finitely many general clauses (with variables) effective and efficient.
Idea (Robinson 1965):

- Resolution for general clauses:
- Equality of ground atoms is generalized to unifiability of general atoms;
- Only compute most general (minimal) unifiers (mgu).

Significance: The advantage of the method in (Robinson 1965) compared with (Gilmore 1960) is that unification enumerates only those instances of clauses that participate in an inference. Moreover, clauses are not right away instantiated into ground clauses. Rather they are instantiated only as far as required for an inference. Inferences with non-ground clauses in general represent infinite sets of ground inferences which are computed simultaneously in a single step.

Resolution for General Clauses

General binary resolution Res:

$$
\begin{aligned}
\frac{D \vee B \quad C \vee \neg A}{(D \vee C) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B) \quad \text { [resolution] } \\
\frac{C \vee A \vee B}{(C \vee A) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B) \quad[\text { factorization] }
\end{aligned}
$$

General resolution RIF with implicit factorization:

$$
\begin{equation*}
\frac{D \vee B_{1} \vee \ldots \vee B_{n} \quad C \vee \neg A}{(D \vee C) \sigma} \text { if } \sigma=\operatorname{mgu}\left(A, B_{1}, \ldots, B_{n}\right) \tag{RIF}
\end{equation*}
$$

For inferences with more than one premise, we assume that the variables in the premises are (bijectively) renamed such that they become different to any variable in the other premises. We do not formalize this. Which names one uses for variables is otherwise irrelevant.

Unification

Let $E=\left\{s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}\right\}\left(s_{i}, t_{i}\right.$ terms or atoms) a multiset of equality problems. A substitution σ is called a unifier of E if $s_{i} \sigma=t_{i} \sigma$ for all $1 \leq i \leq n$.

If a unifier of E exists, then E is called unifiable.
A substitution σ is called more general than a substitution τ, denoted by $\sigma \leq \tau$, if there exists a substitution ρ such that $\rho \circ \sigma=\tau$, where $(\rho \circ \sigma)(x):=(x \sigma) \rho$ is the composition of σ and ρ as mappings. (Note that $\rho \circ \sigma$ has a finite domain as required for a substitution.)

If a unifier of E is more general than any other unifier of E, then we speak of a most general unifier of E, denoted by $\operatorname{mgu}(E)$.

Proposition 3.22

(i) \leq is a quasi-ordering on substitutions, and \circ is associative.
(ii) If $\sigma \leq \tau$ and $\tau \leq \sigma$ (we write $\sigma \sim \tau$ in this case), then $x \sigma$ and $x \tau$ are equal up to (bijective) variable renaming, for any x in X.

A substitution σ is called idempotent, if $\sigma \circ \sigma=\sigma$.

Proposition 3.23σ is idempotent iff $\operatorname{dom}(\sigma) \cap \operatorname{codom}(\sigma)=\emptyset$.

Rule-Based Naive Standard Unification

$$
\begin{array}{rll}
t \doteq t, E & \Rightarrow_{S U} & E \\
f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow_{S U} & s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}, E \\
f(\ldots) \doteq g(\ldots), E & \Rightarrow_{S U} & \perp \\
x \doteq t, E & \Rightarrow_{S U} & x \doteq t, E\{t \mapsto x\} \\
& & \text { if } x \in \operatorname{var}(E), x \notin \operatorname{var}(t) \\
x \doteq t, E & \Rightarrow_{S U} & \perp \\
& & \text { if } x \neq t, x \in \operatorname{var}(t) \\
t \doteq x, E & \Rightarrow_{S U} & x \doteq t, E \\
& & \text { if } t \notin X
\end{array}
$$

SU: Main Properties

If $E=x_{1} \doteq u_{1}, \ldots, x_{k} \doteq u_{k}$, with x_{i} pairwise distinct, $x_{i} \notin \operatorname{var}\left(u_{j}\right)$, then E is called an (equational problem in) solved form representing the solution $\sigma_{E}=\left\{x_{1} \mapsto u_{1}, \ldots\right.$, $\left.x_{k} \mapsto u_{k}\right\}$.

Proposition 3.24 If E is a solved form then σ_{E} is an $m g u$ of E.

Theorem 3.25

1. If $E \Rightarrow_{S U} E^{\prime}$ then σ is a unifier of E iff σ is a unifier of E^{\prime}
2. If $E \Rightarrow{ }_{S U}^{*} \perp$ then E is not unifiable.
3. If $E \Rightarrow{ }_{S U}^{*} E^{\prime}$ with E^{\prime} in solved form, then $\sigma_{E^{\prime}}$ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let's treat the case for the 4th rule here. Suppose σ is a unifier of $x \doteq t$, that is, $x \sigma=t \sigma$. Thus, $\sigma \circ\{x \mapsto t\}=\sigma[x \mapsto$ $t \sigma]=\sigma[x \mapsto x \sigma]=\sigma$. Therefore, for any equation $u \doteq v$ in $E: u \sigma=v \sigma$, iff $u\{x \mapsto$ $t\} \sigma=v\{x \mapsto t\} \sigma$. (2) and (3) follow by induction from (1) using Proposition 3.24.

Main Unification Theorem

Theorem 3.26 E is unifiable if and only if there is a most general unifier σ of E, such that σ is idempotent and $\operatorname{dom}(\sigma) \cup \operatorname{codom}(\sigma) \subseteq \operatorname{var}(E)$.

Proof.

- $\Rightarrow_{S U}$ is Noetherian. A suitable lexicographic ordering on the multisets E (with \perp minimal) shows this. Compare in this order:

1. the number of defined variables (d.h. variables x in equations $x \doteq t$ with $x \notin \operatorname{var}(t)$), which also occur outside their definition elsewhere in E;
2. the multiset ordering induced by (i) the size (number of symbols) in an equation; (ii) if sizes are equal consider $x \doteq t$ smaller than $t \doteq x$, if $t \notin X$.

- A system E that is irreducible w.r.t. $\Rightarrow_{S U}$ is either \perp or a solved form.
- Therefore, reducing any E by SU will end (no matter what reduction strategy we apply) in an irreducible E^{\prime} having the same unifiers as E, and we can read off the mgu (or non-unifiability) of E from E^{\prime} (Theorem 3.25, Proposition 3.24).
- σ is idempotent because of the substitution in rule 4. $\operatorname{dom}(\sigma) \cup \operatorname{codom}(\sigma) \subseteq$ $\operatorname{var}(E)$, as no new variables are generated.

Rule-Based Polynomial Unification

Problem: using $\Rightarrow_{S U}$, an exponential growth of terms is possible.
The following unification algorithm avoids this problem, at least if the final solved form is represented as a DAG.

$$
\begin{array}{rlrl}
t \doteq t, E & \Rightarrow_{P U} & E \\
f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow_{P U} & s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}, E \\
f(\ldots) \doteq g(\ldots), E & \Rightarrow_{P U} & \perp \\
x \doteq y, E & \Rightarrow_{P U} & x \doteq y, E\{x \mapsto y\} \\
& \text { if } x \in \operatorname{var}(E), x \neq y \\
x_{1} \doteq t_{1}, \ldots, x_{n} \doteq t_{n}, E & \Rightarrow_{P U} & \perp \\
& \text { if there are positions } p_{i} \text { with } \\
& t_{i} / p_{i}=x_{i+1}, t_{n} / p_{n}=x_{1} \\
& \text { and some } p_{i} \neq \epsilon \\
x \doteq t, E & \Rightarrow_{P U} & \perp \\
& \text { if } x \neq t, x \in \operatorname{var}(t) \\
t \doteq x, E & \Rightarrow_{P U} & x \doteq t, E \\
& \text { if } t \notin X \\
x \doteq t, x \doteq s, E & \Rightarrow_{P U} & x \doteq t, t \doteq s, E \\
& \text { if } t, s \notin X \text { and }|t| \leq|s|
\end{array}
$$

Properties of PU

Theorem 3.27

1. If $E \Rightarrow_{P U} E^{\prime}$ then σ is a unifier of E iff σ is a unifier of E^{\prime}
2. If $E \Rightarrow{ }_{P U}^{*} \perp$ then E is not unifiable.
3. If $E \Rightarrow_{P U}^{*} E^{\prime}$ with E^{\prime} in solved form, then $\sigma_{E^{\prime}}$ is an mgu of E.

Note: The solved form of $\Rightarrow_{P U}$ is different form the solved form obtained from $\Rightarrow_{S U}$. In order to obtain the unifier $\sigma_{E^{\prime}}$, we have to sort the list of equality problems $x_{i} \doteq t_{i}$ in such a way that x_{i} does not occur in t_{j} for $j<i$, and then we have to compose the substitutions $\left\{x_{1} \mapsto t_{1}\right\} \circ \cdots \circ\left\{x_{k} \mapsto t_{k}\right\}$.

Lifting Lemma

Lemma 3.28 Let C and D be variable-disjoint clauses. If

then there exists a substitution τ such that

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.29 Let N be a set of general clauses saturated under Res, i. e., $\operatorname{Res}(N) \subseteq$ N. Then also $G_{\Sigma}(N)$ is saturated, that is,

$$
\operatorname{Res}\left(G_{\Sigma}(N)\right) \subseteq G_{\Sigma}(N)
$$

Proof. W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Otherwise make them disjoint, and this renaming process changes neither $\operatorname{Res}(N)$ nor $G_{\Sigma}(N)$.)
Let $C^{\prime} \in \operatorname{Res}\left(G_{\Sigma}(N)\right)$, meaning (i) there exist resolvable ground instances $D \sigma$ and $C \rho$ of N with resolvent C^{\prime}, or else (ii) C^{\prime} is a factor of a ground instance $C \sigma$ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent $C^{\prime \prime}$ with $C^{\prime \prime} \tau=C^{\prime}$, for a suitable substitution τ. As $C^{\prime \prime} \in N$ by assumption, we obtain that $C^{\prime} \in G_{\Sigma}(N)$.
Case (ii): Similar.

Herbrand's Theorem

Lemma 3.30 Let N be a set of Σ-clauses, let \mathcal{A} be an interpretation. Then $\mathcal{A} \models N$ implies $\mathcal{A} \models G_{\Sigma}(N)$.

Lemma 3.31 Let N be a set of Σ-clauses, let \mathcal{A} be a Herbrand interpretation. Then $\mathcal{A} \models G_{\Sigma}(N)$ implies $\mathcal{A} \models N$.

Theorem 3.32 (Herbrand) A set N of Σ-clauses is satisfiable if and only if it has a Herbrand model over Σ.

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let $N \not \vDash \perp$.

$$
\begin{aligned}
N \not \models \perp & \Rightarrow \perp \notin \operatorname{Res}^{*}(N) \quad \text { (resolution is sound) } \\
& \Rightarrow \perp \notin G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right) \\
& \Rightarrow I_{G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right)} \models G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right) \quad \text { (Thm. 3.19; Cor. 3.29) } \\
& \Rightarrow I_{G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right)} \models \operatorname{Res}^{*}(N) \quad(\text { Lemma 3.31) } \\
& \Rightarrow I_{G_{\Sigma}\left(\operatorname{Res}^{*}(N)\right)} \models N \quad\left(N \subseteq \operatorname{Res}^{*}(N)\right) \quad \square
\end{aligned}
$$

The Theorem of Löwenheim-Skolem

Theorem 3.33 (Löwenheim-Skolem) Let Σ be a countable signature and let S be a set of closed Σ-formulas. Then S is satisfiable iff S has a model over a countable universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at most countably many new Skolem functions to Σ^{\prime}. As Σ^{\prime} is countable, so is $T_{\Sigma^{\prime}}$, the universe of Herbrand-interpretations over Σ^{\prime}. Now apply Theorem 3.32.

Refutational Completeness of General Resolution

Theorem 3.34 Let N be a set of general clauses where $\operatorname{Res}(N) \subseteq N$. Then

$$
N \models \perp \Leftrightarrow \perp \in N .
$$

Proof. Let $\operatorname{Res}(N) \subseteq N$. By Corollary 3.29: $\operatorname{Res}\left(G_{\Sigma}(N)\right) \subseteq G_{\Sigma}(N)$

$$
\begin{aligned}
N \models \perp & \Leftrightarrow G_{\Sigma}(N) \models \perp \quad \text { (Lemma 3.30/3.31; Theorem 3.32) } \\
& \Leftrightarrow \perp \in G_{\Sigma}(N) \quad \text { (propositional resolution sound and complete) } \\
& \Leftrightarrow \perp \in N \quad \square
\end{aligned}
$$

Compactness of Predicate Logic

Theorem 3.35 (Compactness Theorem for First-Order Logic) Let Φ be a set of first-order formulas. Φ is unsatisfiable \Leftrightarrow some finite subset $\Psi \subseteq \Phi$ is unsatisfiable.

Proof. The " \Leftarrow " part is trivial. For the " \Rightarrow " part let Φ be unsatisfiable and let N be the set of clauses obtained by Skolemization and CNF transformation of the formulas in Φ. Clearly $\operatorname{Res}^{*}(N)$ is unsatisfiable. By Theorem 3.34, $\perp \in \operatorname{Res}^{*}(N)$, and therefore $\perp \in \operatorname{Res}^{n}(N)$ for some $n \in \mathbb{N}$. Consequently, \perp has a finite resolution proof B of depth $\leq n$. Choose Ψ as the subset of formulas in Φ such that the corresponding clauses contain the assumptions (leaves) of B.

