The Interpretation Method

Proving termination by interpretation:
Let A be a Y-algebra; let = be a well-founded strict partial ordering on its universe.

Define the ordering > 4 over T, (X) by s =4 tiff A(3)(s) = A(5)(t) for all assignments
G:X — Uy

Is >4 a reduction ordering?
Lemma 4.31 4 is stable under substitutions.

Proof. Let s =4 ¢, that is, A(5)(s) = A(B)(s’) for all assignments [ : X — Uy. Let
o be a substitution. We have to show that A(vy)(so) = A(y)(s'c) for all assignments
v : X — Uy. Choose = o0, then by the substitution lemma, A(v)(so) = A(3)(s) >
A(B)(s") = A(7)(s'0). Therefore so =4 s'o. O

A function f : U} — Uy, is called monotone (with respect to ), if a > a' implies
flbi,.ooya, ... by) = f(by,...,d ... by) for all a,a’, b; € Upy.

Lemma 4.32 If the interpretation f4 of every function symbol f is monotone w.r. t. =,
then > 4 is compatible with »-operations.

Proof. Let s = ¢, that is, A(5)(s) = A(B)(s") for all f: X — Uya. Let : X — Uy be
an arbitrary assignment. Then

AB)(f(tr, -8, tn)) = fa(AB) (B), - - AP

Therefore f(ty,...,8, ... tn) =4 f(t1,..., 8. .. tn). O

Theorem 4.33 If the interpretation f 4 of every function symbol f is monotone w.r. t. >,
then > 4 is a reduction ordering.

Proof. By the previous two lemmas, = 4 is a rewrite relation. If there were an infinite
chain s; =4 s2 =4 ..., then it would correspond to an infinite chain A(5)(s1) >
A(B)(s2) = ... (with [ chosen arbitrarily). Thus > 4 is well-founded. Irreflexivity and
transitivity are proved similarly. O
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Polynomial Orderings

Polynomial orderings:
Instance of the interpretation method:
The carrier set Uy is some subset of the natural numbers.

To every function symbol f with arity n we associate a polynomial P(X7,..., X)) €
N[Xi, ..., X,] with coefficients in N and indeterminates X, ..., X,. Then we define
falar, ... a,) = Pf(ay,...,a,) for a; € Ugu.

Requirement 1:

If aj,...,a, € Uy, then fy(ay,...,a,) € Uy. (Otherwise, A would not be a -
algebra.)

Requirement 2:
f4 must be monotone (w.r.t. >).
From now on:
Us={neN|n>2}.
If arity(f) = 0, then Py is a constant > 2.

If arity(f) = n > 1, then Py is a polynomial P(Xy,...,X,), such that every X; occurs
in some monomial with exponent at least 1 and non-zero coefficient.

= Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to terms: A
term ¢ containing the variables x1,...,x, yields a polynomial P, with indeterminates
Xi, ..., X, (where X; corresponds to (z;)).

Example:

Q=Ab, f, g} with arity(b) = 0, arity(f) = 1, arity(g) = 3,
Us={neN|n>2}
P, =3, Pp(X1)=X7, Pp(X1, X5, X3)=X1+ X5 X5

Let t = g(f(b), f(x),y), then P(X,Y) =9 + X?Y.

If P, @ are polynomials in N[X1, ..., X,], we write P > Q if P(ay,...,a,) > Q(ay,. .., a,)
for all a1,...,a, € Uy.

Clearly, [ >4 r iff P, > P,.

Question: Can we check P, > P, automatically?
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Hilbert’s 10th Problem:

Given a polynomial P € Z[X1,...,X,] with integer coefficients, is P = 0 for some
n-tuple of natural numbers?

Theorem 4.34 Hilbert’s 10th Problem is undecidable.

Proposition 4.35 Given a polynomial interpretation and two terms [, r, it is undecid-
able whether P, > P,.

Proof. By reduction of Hilbert’s 10th Problem. O

One possible solution:
Test whether P(ay,...,a,) > P.(a,...,a,) for all ay,...,a, e {x eR|x>2}.
This is decidable (but very slow). Since U4 C {z € R | x > 2}, it implies P, > P,.
Another solution (Ben Cherifa and Lescanne):

Consider the difference P(X7,...,X,) — P.(X1,...,X,) as a polynomial with real
coefficients and apply the following inference system to it to show that it is positive
for all a1,...,a, € Ugy:

P =pcr T,

if P contains at least one monomial with a positive coefficient and no monomial with
a negative coefficient.

P+ C)({71 . Xﬁ" — dXih . XTan = BCL P+ C/lel .. XTZZ”,
if e,d>0,p; > ¢ foralli, and ¢ = ¢ —d - 2@—P)t+an—rn) > ()
PaeXPo X dXT . X0 =g, P dXE X0

if e,d>0,p; > ¢ forali and d =d — ¢ 2P +T+Pa=an) >

Lemma 4.36 If P =pcr, P/, then P(ay,...,a,) > P'(ay,...,a,) for all ay,...,a, €
Ugy.

Proof. Follows from the fact that a; € U4 implies a; > 2. O

Proposition 4.37 If P =%, T, then P(ay,...,a,) >0 for all ay,...,a, € Uy.
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4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set F of equations, transform F into an equivalent convergent set R of
rewrite rules.
(If R is finite: decision procedure for E.)

How to ensure termination?

Fix a reduction ordering > and construct R in such a way that —g C > (i.e., [ = r
for every | — r € R).

How to ensure confluence?

Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules
The completion procedure is presented as a set of inference rules working on a set of
equations E and a set of rules R: Fy, R E1, Ri - Ey, Ro ...

At the beginning, F = Ej is the input set and R = Ry is empty. At the end, E should
be empty; then R is the result.

For each step F, R+ E’, R', the equational theories of FU R and E' U R’ agree: ~pur =
%EluR/ .
Notations:

The formula s ~ ¢ denotes either s ~ ¢ or t ~ s.

CP(R) denotes the set of all critical pairs between rules in R.

Orient:
Eu{s=~t}, R
d if t
E, RU{s—t} e

Note: There are equations s & t that cannot be oriented, i.e., neither s > ¢t nor t > s.

Trivial equations cannot be oriented — but we don’t need them anyway:

Delete:
Fu{s=~s}, R
E R
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Critical pairs between rules in R are turned into additional equations:

Deduce:
E, R
Eu{s~t}, R

Note: If (s,t) € CP(R) then s «—g u — g t and hence R |= s ~ t.

if (s,t) € CP(R).

The following inference rules are not absolutely necessary, but very useful (e.g., to get
rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

Fu{s=~t}, R

if .
EU{u~t}, R~ °RY

Simplification of the right-hand side of a rule is unproblematic.
R-Simplify-Rule:

E, RU{s—t}
E, RU{s—u}

lft—>R u.

Simplification of the left-hand side may influence orientability and orientation. There-
fore, it yields an equation:

L-Simplify-Rule:

E, RU{s—t} if s spuusingarulel -r€R
Fu{u=t}, R such that s 71 (see next slide).

For technical reasons, the lhs of s — ¢ may only be simplified using a rule [ — r, if
[ — r cannot be simplified using s — ¢, that is, if s J [, where the encompassment
quasi-ordering J is defined by

s J1 if s/p=lo for some p and o

and 7 = J\ L is the strict part of J.
Lemma 4.38 1 is a well-founded strict partial ordering.
Lemma 4.39 If £, R+ E', R, then g r = XpuR -

Lemma 4.40 If E,R+ E', R and —, C >, then —p C >.
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