Automated Reasoning®

Christoph Weidenbach

Summer Term 2010

Topics of the Course |

Propositional logic

language: syntax, semantics — orderings
calculi: DPLL-procedure
implementation: 2-watched literal, clause learning

Linear arithmetic

language: syntax, semantics
calculi: Fourier-Motzkin

Propositional logic modulo a theory T

syntax, semantics
calculi: DPLL(T)-procedure, ...
implementation: coupling

*This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, mostly proofs of theorems that are presented on the blackboard during the course. It is not
a full script and does not contain the examples and additional explanations given during the lecture.
Moreover it should not be taken as an example how to write a research paper — neither stylistically
nor typographically.

Topics of the Course Il

First-order predicate logic with equality

syntax, semantics, model theory, ...
calculi: superposition (SUP)
implementation: sharing, indexing

First-order predicate logic with equality modulo a theory T

syntax, semantics, model theory, ...
calculi: SUP(T)

implementation: coupling

1 Propositional Logic

Propositional logic

e logic of truth values
e decidable (but NP-complete)
e can be used to describe functions over a finite domain

e important for hardware applications (e.g., model checking)

1.1 Syntax

e propositional variables

e logical symbols
= Boolean combinations

Propositional Variables

Let II be a set of propositional variables.

We use letters P, @, R, S, to denote propositional variables.

Propositional Formulas

11 is the set of propositional formulas over 11 defined as follows:

FGH = L (falsum)
| T (verum)
| P, Pell (atomic formula)
| -F (negation)
| (FAG) (conjunction)
| (FVGQG) (disjunction)
| (F—G) (implication)
| (F<G) (equivalence)

Notational Conventions

e We omit brackets according to the following rules:
- >, Vo>, A >, = >, e (binding precedences)
— V and A are associative

— — is right-associative,
ie, F— G — H means F' — (G — H).

1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two truth values “true”
and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional
variable has to be defined by a valuation.

A Il-valuation is a map
AT —{0,1}.

where {0, 1} is the set of truth values.

Truth Value of a Formula in A

Given a Il-valuation A, the function A* : ¥-formulas — {0,1} is defined inductively
over the structure of F' as follows:

A (L) =0
AY(T) =1
A*(P) = A(P)
A (=F) = BL(A™(F))
AN (FpG) = By(A(F), A"(G))

where B, is the Boolean function associated with p defined by the usual truth table.
For simplicity, we write A instead of A*.

We also write p instead of B, i.e., we use the same notation for a logical symbol and
for its meaning (but remember that formally these are different things.)

1.3 Models, Validity, and Satisfiability

F'is valid in A (A is a model of F'; F holds under A):

AEF & AF)=1

F' is valid (or is a tautology):
= F & A F for all II-valuations A
F' is called satisfiable if there exists an A such that A = F. Otherwise F is called

unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F'), written F' = G, if for all II-valuations
A, whenever A |= F then A = G.

F and G are called equivalent, written F' H G, if for all II-valuations A4 we have

AEF e AEG.

Proposition 1.1 F = G if and only if = (F' — G).(Proof follows)

Proof. (=) Suppose that F' entails G. Let A be an arbitrary II-valuation. We have to
show that A |= F' — G. If A(F) =1, then A(G) =1 (since F' = G), and hence A(F —
G) = 1. Otherwise A(F) = 0, then A(F — G) = B_(0,.A(G)) = 1 independently of
A(G). In both cases, A = F — G.

(<) Suppose that F' does not entail G. Then there exists a II-valuation .4 such that
A = F, but not A = G. Consequently, A(F — G) =B_(A(F), A(G)) =B_(1,0) =0,
so (F — G) does not hold in A. O

Proposition 1.2 F' H G if and only if = (F < G).
Proof. Follows from Prop. 1.1. a

Extension to sets of formulas N in the “natural way”:

N = F if for all II-valuations A:
if Al=G for all G € N, then A |= F.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 1.3 F is valid if and only if =F' is unsatisfiable.(Proof follows)

Proof. (=) If F' is valid, then A(F) = 1 for every valuation A. Hence A(—F) =
B_(A(F)) =B.(1) = 0 for every valuation A, so =F is unsatisfiable.

(<) Analogously. O

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

In a similar way, entailment N = F' can be reduced to unsatisfiability:

Proposition 1.4 N |= F if and only if N U {—=F'} is unsatisfiable.

Checking Unsatisfiability
Every formula F' contains only finitely many propositional variables. Obviously, A(F)
depends only on the values of those finitely many variables in ' under A.

If F' contains n distinct propositional variables, then it is sufficient to check 2" valuations
to see whether F' is satisfiable or not.
= truth table.

So the satisfiability problem is clearly deciadable (but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check
the satisfiability of a formula. (later more)

Substitution Theorem

Proposition 1.5 Let ' and G be equivalent formulas, let H be a formula in which F'
occurs as a subformula.

Then H is equivalent to H' where H' is obtained from H by replacing the occurrence of
the subformula F' by G. (Notation: H = H[F], H = H[G]. Proof follows)

Proof. The proof proceeds by induction over the formula structure of H.

Each of the formulas L, T, and P for P € II contains only one subformula, namely
itself. Hence, if H = H[F] equals L, T, or P, then H = F, H = G, and H and H' are
equivalent by assumption.

If H = Hy A Hy, then either F' equals H (this case is treated as above), or F' is a
subformula of H; or Hy. Without loss of generality, assume that F' is a subformula of
Hy, so H = H,[F] A Hy. By the induction hypothesis, H,[F] and H;[G] are equiva-
lent. Hence, for every valuation A, A(H') = A(H1[G] N Hy) = A(H1[G]) N A(Hs) =
A(H [F]) NA(Hy) = A(H [F] N Hy) = A(H).

The other boolean connectives are handled analogously. O

Some Important Equivalences

Proposition 1.6 The following equivalences are valid for all formulas F, G, H:

(FAF) & F

(FVF)—F (Idempotency)
(FAG)— (GAF)
(FVG)«— (GVF) (Commutativity)

(FAGAH)) < (FAG)NH)

(FV(GVH))« ((FVG)VH) (Associativity)
(FAN(GVH)« (FANG)V(FANH))
(FV(GANH))« ((FVG)AN(FV H)) (Distributivity)

(FAN(FVGE) < F

(FV(FANG)) < F (Absorption)
(——F) < F (Double Negation)
—(FAG) < (-F V-G)
—(FVGE) « (-FAN-G) (De Morgan’s Laws)

(FANG) < F|if G is a tautology
(FVG) < T,Iif G is a tautology
(FANG) < L, if G is unsatisfiable
(FV Q) « F,if G is unsatisfiable (Tautology Laws)

(F—G)< (F—-G)NG—F)) (Equivalence)
(F—G) < (-FVG) (Implication)

