
Automated Reasoning∗

Christoph Weidenbach

Summer Term 2010

Topics of the Course I

Propositional logic

language: syntax, semantics – orderings
calculi: DPLL-procedure
implementation: 2-watched literal, clause learning

Linear arithmetic

language: syntax, semantics
calculi: Fourier-Motzkin

Propositional logic modulo a theory T

syntax, semantics
calculi: DPLL(T)-procedure, . . .
implementation: coupling

∗This document contains the text of the lecture slides (almost verbatim) plus some additional infor-
mation, mostly proofs of theorems that are presented on the blackboard during the course. It is not
a full script and does not contain the examples and additional explanations given during the lecture.
Moreover it should not be taken as an example how to write a research paper – neither stylistically
nor typographically.

1

Topics of the Course II

First-order predicate logic with equality

syntax, semantics, model theory, . . .
calculi: superposition (SUP)
implementation: sharing, indexing

First-order predicate logic with equality modulo a theory T

syntax, semantics, model theory, . . .
calculi: SUP(T)
implementation: coupling

1 Propositional Logic

Propositional logic

• logic of truth values

• decidable (but NP-complete)

• can be used to describe functions over a finite domain

• important for hardware applications (e. g., model checking)

1.1 Syntax

• propositional variables

• logical symbols
⇒ Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.

We use letters P , Q, R, S, to denote propositional variables.

2

Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F, G, H ::= ⊥ (falsum)
| ⊤ (verum)
| P , P ∈ Π (atomic formula)
| ¬F (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)

Notational Conventions

• We omit brackets according to the following rules:

– ¬ >p ∨ >p ∧ >p → >p ↔ (binding precedences)

– ∨ and ∧ are associative

– → is right-associative,
i. e., F → G→ H means F → (G→ H).

1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two truth values “true”
and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional
variable has to be defined by a valuation.

A Π-valuation is a map

A : Π→ {0, 1}.

where {0, 1} is the set of truth values.

3

Truth Value of a Formula in A

Given a Π-valuation A, the function A∗ : Σ-formulas → {0, 1} is defined inductively
over the structure of F as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F) = B¬(A∗(F))

A∗(FρG) = Bρ(A
∗(F),A∗(G))

where Bρ is the Boolean function associated with ρ defined by the usual truth table.

For simplicity, we write A instead of A∗.

We also write ρ instead of Bρ, i. e., we use the same notation for a logical symbol and
for its meaning (but remember that formally these are different things.)

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable if there exists an A such that A |= F . Otherwise F is called
unsatisfiable (or contradictory).

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all Π-valuations
A, whenever A |= F then A |= G.

F and G are called equivalent, written F |=| G, if for all Π-valuations A we have
A |= F ⇔ A |= G.

Proposition 1.1 F |= G if and only if |= (F → G).(Proof follows)

4

Proof. (⇒) Suppose that F entails G. Let A be an arbitrary Π-valuation. We have to
show that A |= F → G. If A(F) = 1, then A(G) = 1 (since F |= G), and hence A(F →
G) = 1. Otherwise A(F) = 0, then A(F → G) = B→(0,A(G)) = 1 independently of
A(G). In both cases, A |= F → G.

(⇐) Suppose that F does not entail G. Then there exists a Π-valuation A such that
A |= F , but not A |= G. Consequently, A(F → G) = B→(A(F),A(G)) = B→(1, 0) = 0,
so (F → G) does not hold in A. 2

Proposition 1.2 F |=| G if and only if |= (F ↔ G).

Proof. Follows from Prop. 1.1. 2

Extension to sets of formulas N in the “natural way”:

N |= F if for all Π-valuations A:
if A |= G for all G ∈ N , then A |= F .

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 1.3 F is valid if and only if ¬F is unsatisfiable.(Proof follows)

Proof. (⇒) If F is valid, then A(F) = 1 for every valuation A. Hence A(¬F) =
B¬(A(F)) = B¬(1) = 0 for every valuation A, so ¬F is unsatisfiable.

(⇐) Analogously. 2

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

In a similar way, entailment N |= F can be reduced to unsatisfiability:

Proposition 1.4 N |= F if and only if N ∪ {¬F} is unsatisfiable.

5

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, A(F)
depends only on the values of those finitely many variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to check 2n valuations
to see whether F is satisfiable or not.
⇒ truth table.

So the satisfiability problem is clearly deciadable (but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check
the satisfiability of a formula. (later more)

Substitution Theorem

Proposition 1.5 Let F and G be equivalent formulas, let H be a formula in which F
occurs as a subformula.

Then H is equivalent to H ′ where H ′ is obtained from H by replacing the occurrence of
the subformula F by G. (Notation: H = H [F], H ′ = H [G]. Proof follows)

Proof. The proof proceeds by induction over the formula structure of H .

Each of the formulas ⊥, ⊤, and P for P ∈ Π contains only one subformula, namely
itself. Hence, if H = H [F] equals ⊥, ⊤, or P , then H = F , H ′ = G, and H and H ′ are
equivalent by assumption.

If H = H1 ∧ H2, then either F equals H (this case is treated as above), or F is a
subformula of H1 or H2. Without loss of generality, assume that F is a subformula of
H1, so H = H1[F] ∧ H2. By the induction hypothesis, H1[F] and H1[G] are equiva-
lent. Hence, for every valuation A, A(H ′) = A(H1[G] ∧ H2) = A(H1[G]) ∧ A(H2) =
A(H1[F]) ∧A(H2) = A(H1[F] ∧H2) = A(H).

The other boolean connectives are handled analogously. 2

Some Important Equivalences

Proposition 1.6 The following equivalences are valid for all formulas F, G, H :

6

(F ∧ F)↔ F
(F ∨ F)↔ F (Idempotency)

(F ∧G)↔ (G ∧ F)
(F ∨G)↔ (G ∨ F) (Commutativity)

(F ∧ (G ∧H))↔ ((F ∧G) ∧H)
(F ∨ (G ∨H))↔ ((F ∨G) ∨H) (Associativity)

(F ∧ (G ∨H))↔ ((F ∧G) ∨ (F ∧H))
(F ∨ (G ∧H))↔ ((F ∨G) ∧ (F ∨H)) (Distributivity)

(F ∧ (F ∨G))↔ F
(F ∨ (F ∧G))↔ F (Absorption)

(¬¬F)↔ F (Double Negation)
¬(F ∧G)↔ (¬F ∨ ¬G)
¬(F ∨G)↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧G)↔ F , if G is a tautology
(F ∨G)↔ ⊤, if G is a tautology
(F ∧G)↔ ⊥, if G is unsatisfiable
(F ∨G)↔ F , if G is unsatisfiable (Tautology Laws)

(F ↔ G)↔ ((F → G) ∧ (G→ F)) (Equivalence)
(F → G)↔ (¬F ∨G) (Implication)

7

1.4 Normal Forms

We define conjunctions of formulas as follows:
∧0

i=1 Fi = ⊤.
∧1

i=1 Fi = F1.
∧n+1

i=1 Fi =
∧n

i=1 Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1 Fi = ⊥.
∨1

i=1 Fi = F1.
∨n+1

i=1 Fi =
∨n

i=1 Fi ∨ Fn+1.

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable ¬P .

A clause is a (possibly empty) disjunction of literals.

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction
of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of
literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions contains a pair of
complementary literals P and ¬P .

Conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions
contains a pair of complementary literals P and ¬P .

On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF
formulas is known to be coNP-complete.

8

Conversion to CNF/DNF

Proposition 1.7 For every formula there is an equivalent formula in CNF (and also an
equivalent formula in DNF).

Proof. We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity and commutativity
of ∧ and ∨):

Step 1: Eliminate equivalences:

(F ↔ G) ⇒K (F → G) ∧ (G→ F)

Step 2: Eliminate implications:

(F → G) ⇒K (¬F ∨G)

Step 3: Push negations downward:

¬(F ∨G) ⇒K (¬F ∧ ¬G)

¬(F ∧G) ⇒K (¬F ∨ ¬G)

Step 4: Eliminate multiple negations:

¬¬F ⇒K F

Step 5: Push disjunctions downward:

(F ∧G) ∨H ⇒K (F ∨H) ∧ (G ∨H)

Step 6: Eliminate ⊤ and ⊥:

(F ∧⊤) ⇒K F

(F ∧⊥) ⇒K ⊥

(F ∨⊤) ⇒K ⊤

(F ∨⊥) ⇒K F

¬⊥ ⇒K ⊤

¬⊤ ⇒K ⊥

9

Proving termination is easy for most of the steps; only step 3 and step 5 are a bit more
complicated.

For step 3, we can prove termination in the following way: We define a function µ from
formulas to positive integers such that µ(⊥) = µ(⊤) = µ(P) = 1, µ(¬F) = 2µ(F),
µ(F ∧ G) = µ(F ∨ G) = µ(F → G) = µ(F ↔ G) = µ(F) + µ(G) + 1. Whenever
a formula H ′ is the result of applying a rule of step 3 to a formula H , then µ(H) >
µ(H ′). Since µ takes only integer values and µ(H) ≥ 1 for all formulas H , step 3 must
terminate.

Termination of step 5 is proved similarly using a function ν from formulas to positive
integers such that ν(⊥) = ν(⊤) = ν(P) = 1, ν(¬F) = ν(F) + 1, ν(F ∧ G) = ν(F →
G) = ν(F ↔ G) = ν(F) + ν(G) + 1, and ν(F ∨ G) = 2ν(F)ν(G). Again, if a formula
H ′ is the result of applying a rule of step 5 to a formula H , then ν(H) > ν(H ′). Since
ν takes only integer values and Since ν(H) ≥ 1 for all formulas H , step 5 terminates,
too.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that conjunctions
have to be pushed downward in step 5. 2

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the
size of the original one.

Satisfiability-preserving Transformations

The goal

“find a formula G in CNF such that F |=| G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ ⇔ G |= ⊥”

we can get an efficient transformation.

Idea: A formula F [F ′] is satisfiable if and only if F [P] ∧ (P ↔ F ′) is satisfiable (where
P is a new propositional variable that works as an abbreviation for F ′).

We can use this rule recursively for all subformulas in the original formula (this intro-
duces a linear number of new propositional variables).

10

Conversion of the resulting formula to CNF increases the size only by an additional
factor (each formula P ↔ F ′ gives rise to at most one application of the distributivity
law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into
account.

Assume that F contains neither → nor ↔. A subformula F ′ of F has positive polarity
in F , if it occurs below an even number of negation signs; it has negative polarity in F ,
if it occurs below an odd number of negation signs.

Proposition 1.8 Let F [F ′] be a formula containing neither → nor ↔; let P be a
propositional variable not occurring in F [F ′].

If F ′ has positive polarity in F , then F [F ′] is satisfiable if and only if F [P] ∧ (P → F ′)
is satisfiable.

If F ′ has negative polarity in F , then F [F ′] is satisfiable if and only if F [P] ∧ (F ′ → P)
is satisfiable.

Proof. Exercise. 2

11

1.5 The DPLL Procedure

Goal:
Given a propositional formula in CNF (or alternatively, a finite set N of clauses), check
whether it is satisfiable (and optionally: output one solution, if it is satisfiable).

Assumption:
Clauses contain neither duplicated literals nor complementary literals.

Notation:
L is the complementary literal of L, i. e., P = ¬P and ¬P = P .

Satisfiability of Clause Sets

A |= N if and only if A |= C for all clauses C in N .

A |= C if and only if A |= L for some literal L ∈ C.

Partial Valuations

Since we will construct satisfying valuations incrementally, we consider partial valuations
(that is, partial mappings A : Π→ {0, 1}).

Every partial valuation A corresponds to a set M of literals that does not contain
complementary literals, and vice versa:

A(L) is true, if L ∈M .

A(L) is false, if L ∈M .

A(L) is undefined, if neither L ∈M nor L ∈ M .

We will use A and M interchangeably.

A clause is true under a partial valuation A (or under a set M of literals) if one of
its literals is true; it is false (or “conflicting”) if all its literals are false; otherwise it is
undefined (or “unresolved”).

12

Unit Clauses

Observation:
Let A be a partial valuation. If the set N contains a clause C, such that all literals but
one in C are false under A, then the following properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and makes the remaining
literal L of C true.

C is called a unit clause; L is called a unit literal.

Pure Literals

One more observation:
Let A be a partial valuation and P a variable that is undefined under A. If P occurs
only positively (or only negatively) in the unresolved clauses in N , then the following
properties are equivalent:

• there is a valuation that is a model of N and extends A.

• there is a valuation that is a model of N and extends A and assigns true (false) to
P .

P is called a pure literal.

The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(literal set M , clause set N) {
if (all clauses in N are true under M) return true;
elsif (some clause in N is false under M) return false;
elsif (N contains unit clause P) return DPLL(M ∪ {P}, N);
elsif (N contains unit clause ¬P) return DPLL(M ∪ {¬P}, N);
elsif (N contains pure literal P) return DPLL(M ∪ {P}, N);
elsif (N contains pure literal ¬P) return DPLL(M ∪ {¬P}, N);
else {

let P be some undefined variable in N ;
if (DPLL(M ∪ {¬P}, N)) return true;
else return DPLL(M ∪ {P}, N);

}

}

Initially, DPLL is called with an empty literal set and the clause set N .

13

1.6 Well-Founded Orderings

Literature: Franz Baader and Tobias Nipkow: Term rewriting and all that, Cambridge
Univ. Press, 1998, Chapter 2.

To show termination of the iterative DPLL calculus, we will make use of the concept of
well-founded orderings.

Partial Orderings

A strict partial ordering ≻ on a set M is a transitive and irreflexive binary relation on
M .

An a ∈M is called minimal, if there is no b in M such that a ≻ b.

An a ∈M is called smallest, if b ≻ a for all b ∈M different from a.

Notation:
≺ for the inverse relation ≻−1

� for the reflexive closure (≻∪=) of ≻

Well-Foundedness

A strict partial ordering ≻ is called well-founded (Noetherian), if there is no infinite
descending chain a0 ≻ a1 ≻ a2 ≻ . . . with ai ∈M .

Well-Founded Orderings: Examples

Natural numbers. (N, >)

Lexicographic orderings. Let (M1,≻1), (M2,≻2) be well-founded orderings. Then let
their lexicographic combination

≻ = (≻1,≻2)lex

on M1 ×M2 be defined as

(a1, a2) ≻ (b1, b2) :⇔ a1 ≻1 b1, or else a1 = b1 & a2 ≻2 b2

(analogously for more than two orderings)

This again yields a well-founded ordering (proof below).

14

Length-based ordering on words. For alphabets Σ with a well-founded ordering >Σ, the
relation ≻, defined as
w ≻ w′ := α) |w| > |w′| or

β) |w| = |w′| and w >Σ,lex w′,
is a well-founded ordering on Σ∗ (proof below).

Counterexamples:
(Z, >);
(N, <);
the lexicographic ordering on Σ∗

Basic Properties of Well-Founded Orderings

Lemma 1.9 (M,≻) is well-founded if and only if every ∅ ⊂ M ′ ⊆ M has a minimal
element.

Lemma 1.10 (Mi,≻i) is well-founded for i = 1, 2 if and only if (M1 ×M2, ≻) with
≻ = (≻1,≻2)lex is well-founded.

Proof. (i) “⇒”: Suppose (M1 ×M2, ≻) is not well-founded. Then there is an infinite
sequence (a0, b0) ≻ (a1, b1) ≻ (a2, b2) ≻

Let A = {ai | i ≥ 0} ⊆ M1. Since (M1,≻1) is well-founded, A has a minimal element
an. But then B = {bi | i ≥ n} ⊆M2 can not have a minimal element, contradicting the
well-foundedness of (M2,≻2).

(ii) “⇐”: obvious. 2

Noetherian Induction

Theorem 1.11 (Noetherian Induction) Let (M,≻) be a well-founded ordering, let
Q be a property of elements of M .

If for all m ∈M the implication

if Q(m′), for all m′ ∈M such that m ≻ m′,1

then Q(m).2

is satisfied, then the property Q(m) holds for all m ∈M .

1induction hypothesis
2induction step

15

Proof. Let X = {m ∈M | Q(m) false}. Suppose, X 6= ∅. Since (M,≻) is well-founded,
X has a minimal element m1. Hence for all m′ ∈ M with m′ ≺ m1 the property Q(m′)
holds. On the other hand, the implication which is presupposed for this theorem holds
in particular also for m1, hence Q(m1) must be true so that m1 can not be in X.
Contradiction. 2

Multi-Sets

Let M be a set. A multi-set S over M is a mapping S : M → N. Hereby S(m) specifies
the number of occurrences of elements m of the base set M within the multi-set S.

We say that m is an element of S, if S(m) > 0.

We use set notation (∈, ⊂, ⊆, ∪, ∩, etc.) with analogous meaning also for multi-sets,
e. g.,

(S1 ∪ S2)(m) = S1(m) + S2(m)

(S1 ∩ S2)(m) = min{S1(m), S2(m)}

A multi-set is called finite, if

|{m ∈ M | s(m) > 0}| <∞,

for each m in M .

From now on we only consider finite multi-sets.

Example. S = {a, a, a, b, b} is a multi-set over {a, b, c}, where S(a) = 3, S(b) = 2,
S(c) = 0.

Multi-Set Orderings

Lemma 1.12 (König’s Lemma) Every finitely branching tree with infinitely many
nodes contains an infinite path.

Let (M,≻) be a partial ordering. The multi-set extension of ≻ to multi-sets over M is
defined by

S1 ≻mul S2 :⇔ S1 6= S2

and ∀m ∈M : [S2(m) > S1(m)

⇒ ∃m′ ∈M : (m′ ≻ m and S1(m
′) > S2(m

′))]

16

Theorem 1.13
(a) ≻mul is a strict partial ordering.
(b) ≻ well-founded ⇒ ≻mul well-founded.
(c) ≻ total ⇒ ≻mul total.

Proof. see Baader and Nipkow, page 22–24. 2

1.7 The Propositional Resolution Calculus

Resolution is the following calculus operating on a set N of propositional clauses.

Resolution

N ∪ {C ∨ L} ∪ {D ∨ L} ⇒Res

N ∪ {C ∨ L} ∪ {D ∨ L} ∪ {C ∨D}

Factoring

N ∪ {C ∨ L ∨ L} ⇒Res N ∪ {C ∨ L ∨ L} ∪ {C ∨ L}

Subsumption

N ∪ {C} ∪ {D} ⇒Res N ∪ {C}

if C ⊆ D considering C, D as multi-sets of literals

Merging Replacement Resolution

N ∪ {C ∨ L} ∪ {D ∨ L} ⇒Res N ∪ {C ∨ L} ∪ {D}

if C ⊆ D considering C, D as multi-sets of literals

Propositional resolution is sound and complete: N is an unsatisfiable set of propositional
clauses if and only if the empty clause can be derived by resolution from N .

17

1.8 DPLL Iteratively

In practice, there are several changes to the procedure:

The pure literal check is often omitted (it is too expensive).

The branching variable is not chosen randomly.

The algorithm is implemented iteratively;
the backtrack stack is managed explicitly
(it may be possible and useful to backtrack more than one level).

Information is reused by learning.

Branching Heuristics

Choosing the right undefined variable to branch is important for efficiency, but the
branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be recomputed too frequently.

In general: choose variables that occur frequently.

The Deduction Algorithm

For applying the unit rule, we need to know the number of literals in a clause that are
not false.

Maintaining this number is expensive, however.

Better approach: “Two watched literals”:

In each clause, select two (currently undefined) “watched” literals.

For each variable P , keep a list of all clauses in which P is watched and a list of all
clauses in which ¬P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses in which P (or ¬P) is
watched and watch another literal (that is true or undefined) in this clause if possible.

Watched literal information need not be restored upon backtracking.

18

Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further branches.

Method: Learning:

If a conflicting clause is found, derive a new clause from the conflict and add it to the
current set of clauses.

Problem: This may produce a large number of new clauses; therefore it may become
necessary to delete some of them afterwards to save space.

Backjumping

Related technique:
non-chronological backtracking (“backjumping”):

If a conflict is independent of some earlier branch, try to skip over that backtrack
level.

Restart

Runtimes of DPLL-style procedures depend extremely on the choice of branching vari-
ables.

If no solution is found within a certain time limit, it can be useful to restart from scratch
with another choice of branchings (but learned clauses may be kept).

In particular, after learning a unit clause a restart is done.

Formalizing DPLL with Refinements

The DPLL procedure is modelled by a transition relation ⇒DPLL on a set of states.

States:

• fail

• M ‖ N ,

where M is a list of annotated literals and N is a set of clauses.

Annotated literal:

• L: deduced literal, due to unit propagation.

• Ld: decision literal (guessed literal).

19

Unit Propagate:

M ‖ N ∪ {C ∨ L} ⇒DPLL M L ‖ N ∪ {C ∨ L}

if C is false under M and L is undefined under M .

Decide:

M ‖ N ⇒DPLL M Ld ‖ N

if L is undefined under M and contained in N .

Fail:

M ‖ N ∪ {C} ⇒DPLL fail

if C is false under M and M contains no decision literals.

Backjump:

M ′ Ld M ′′ ‖ N ⇒DPLL M ′ L′ ‖ N

if there is some “backjump clause” C ∨ L′ such that
N |= C ∨ L′,
C is false under M ′, and
L′ is undefined under M ′.

We will see later that the Backjump rule is always applicable, if the list of literals M
contains at least one decision literal and some clause in N is false under M .

There are many possible backjump clauses. One candidate: L1 ∨ . . . ∨ Ln, where the Li

are all the decision literals in M Ld M ′. (But usually there are better choices.)

Lemma 1.14 If we reach a state M ‖ N starting from ∅ ‖ N , then:

(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from N and decision literals occurring before
L in M .

Proof. By induction on the length of the derivation. 2

Lemma 1.15 Every derivation starting from ∅ ‖ N terminates. (Proof follows)

Proof. (Idea) Consider a DPLL derivation step M ‖ N ⇒DPLL M ′ ‖ N ′ and a decom-
position M0l

d
1M1 . . . ldkMk of M (accordingly for M ′). Let n be the number of distinct

propositional variables in N . Then k, k′ and the length of M , M ′ are always smaller
than n. We define f(M) = n− length(M) and finally

M ‖ N ≻ M ′ ‖ N ′ if

20

(i) f(M0) = f(M ′
0), . . . , f(Mi−1) = f(M ′

i−1), f(Mi) > f(M ′
i) for some i < k, k′ or

(ii) f(Mj) = f(M ′
j) for all 1 ≤ j ≤ k and f(M) > f(M ′).

Lemma 1.16 Suppose that we reach a state M ‖ N starting from ∅ ‖ N such that
some clause D ∈ N is false under M . Then:

(1) If M does not contain any decision literal, then “Fail” is applicable.

(2) Otherwise, “Backjump” is applicable.

(Proof follows)

Proof. (1) Obvious.

(2) Let L1, . . . , Ln be the decision literals occurring in M (in this order). Since M |= ¬D,
we obtain, by Lemma 1.14, N ∪ {L1, . . . , Ln} |= ¬D. Since D ∈ N , N |= L1 ∨ · · · ∨ Ln.
Now let C = L1 ∨ · · · ∨ Ln−1, L′ = Ln, L = Ln, and let M ′ be the list of all literals of
M occurring before Ln, then the condition of “Backjump” is satisfied. 2

Theorem 1.17 (1) If we reach a final state M ‖ N starting from ∅ ‖ N , then N is
satisfiable and M is a model of N .

(2) If we reach a final state fail starting from ∅ ‖ N , then N is unsatisfiable.

(Proof follows)

Proof. (1) Observe that the “Decide” rule is applicable as long as literals are undefined
under M . Hence, in a final state, all literals must be defined. Furthermore, in a final
state, no clause in N can be false under M , otherwise “Fail” or “Backjump” would be
applicable. Hence M is a model of every clause in N .

(2) If we reach fail , then in the previous step we must have reached a state M ‖ N such
that some C ∈ N is false under M and M contains no decision literals. By part (2) of
Lemma 1.14, every literal in M follows from N . On the other hand, C ∈ N , so N must
be unsatisfiable. 2

Getting Better Backjump Clauses

Suppose that we have reached a state M ‖ N such that some clause C ∈ N (or following
from N) is false under M .

Consequently, every literal of C is the complement of some literal in M .

(1) If every literal in C is the complement of a decision literal of M . Then C is a
backjump clause.

21

(2) Otherwise, C = C ′ ∨ L, such that L is a deduced literal.

For every deduced literal L, there is a clause D ∨ L, such that N |= D ∨ L and D is
false under M .

Consequently, N |= D ∨ C ′ and D ∨ C ′ is also false under M .

By repeating this process, we will eventually obtain a clause that consists only of com-
plements of decision literals and can be used in the “Backjump” rule.

Moreover, such a clause is a good candidate for learning.

Learning Clauses

The DPLL system can be extended by two rules to learn and to forget clauses:

Learn:

M ‖ N ⇒DPLL M ‖ N ∪ {C}

if N |= C.

Forget:

M ‖ N ∪ {C} ⇒DPLL M ‖ N

if N |= C.

If we ensure that no clause is learned infinitely often, then termination is guaranteed.

The other properties of the basic DPLL system hold also for the extended system.

Preprocessing

Modern SAT solvers use the following techniques:

(i) Subsumption

(ii) Purity Deletion

(iii) Merging Replacement Resolution

(iv) Tautology Deletion

(v) Literal Elimination: do all possible resolution step on a literal and throw away the
parent clauses

22

Further Information

The ideas described so far heve been implemented in all modern SAT solvers: zChaff ,
miniSAT,picoSAT. Because of clause learning the algorithm is now called CDCL: Con-
flict Driven Clause Learning.

It has been shown in 2009 that CDCL can polynomially simulate resolution, a long
standing open question:

Knot Pipatsrisawat, Adnan Darwiche : On the Power of Clause-Learning SAT Solvers
with Restarts. CP 2009 : 654-668

Literature:
Lintao Zhang and Sharad Malik: The Quest for Efficient Boolean Satisfiability Solvers;
Proc. CADE-18, LNAI 2392, pp. 295–312, Springer, 2002.

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solvin SAT and SAT Modulo
Theories; From an abstract Davis-Putnam-Logemann-Loveland precedure to DPLL(T),
pp 937–977, Journal of the ACM, 53(6), 2006.

Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh (Editors): Handbook of
Satisfiability; IOS Press, 2009

Daniel Leberre’s slides at VTSA’09: http://www.mpi-inf.mpg.de/vtsa09/.

23

1.9 Splitting into Horn Clauses (Extra Topic)

• A Horn clause is a clause with at most one positive literal.

• They are typically denoted as implications: P1, . . . , Pn → Q.
(In general we can write P1, . . . , Pn → Q1, . . . , Qm for ¬P1 ∨ . . .∨¬Pn ∨Q1 ∨ . . .∨
Qm.)

• Compared to arbitrary clause sets, Horn clause sets enjoy further properties:

– Horn clause sets have unique minimal models.

– Checking satisfiability is often of lower complexity.

Propositional Horn Clause SAT is in P

boolean HornSAT(literal set M , Horn clause set N) {
if (all clauses in N are supported by M) return true;
elsif (a negative clause in N is not supported by M) return false;
elsif (N contains clause P1, . . . , Pn → Q where

{P1, . . . , Pn} ⊆M and Q 6∈M)
return HornSAT(M ∪ {Q}, N);

}

A clause P1, . . . , Pn → Q1, . . . , Qm is supported by M if {P1, . . . , Pn} 6⊆ M or some
Qi ∈M . A negative clause consists of negative literals only.

Initially, HornSAT is called with an empty literal set M .

Lemma 1.18 Let N be a set of propositional Horn clauses.Then:

(1) HornSAT(∅, N)=true iff N is satisfiable

(2) HornSAT is in P

Proof. (1) (Idea) For example, by induction on the number of positive literals in N .

(2) (Scetch) For each recursive call M contains one more positive literal. Thus Horn-
SAT terminates after at most n recursive calls, where n is the number of propositional
variables in N . 2

24

SplitHornSAT

boolean SplitHornSAT(clause set N) {
if (N is Horn)

g return HornSAT(∅,N);
else {

select non Horn clause P1, . . . , Pn → Q1, . . . , Qm from N ;
N ′ = N \ {P1, . . . , Pn → Q1, . . . , Qm};
if (SplitHornSAT(N ′ ∪ {P1, . . . , Pn → Q1})) return true;
else return

SplitHornSAT(N ′ ∪ {→ Q2, . . . , Qm} ∪
⋃

i{→ Pi} ∪ {Q1 →});
}

}

Lemma 1.19 Let N be a set of propositional clauses. Then:

(1) SplitHornSAT(N)=true iff N is satisfiable

(2) SplitHornSAT(N) terminates

Proof. (1) (Idea) Show that N is satisfiable iff N ′ ∪ {P1, . . . , Pn → Q1} is satisfiable or
N ′ ∪ {→ Q2, . . . , Qm} ∪

⋃
i{→ Pi} ∪ {Q1 →} is satisfiable for some clause P1, . . . , Pn →

Q1, . . . , Qm from N .

(2) (Idea) Each recursive call reduces the number of positive literals in non Horn clauses.
2

1.10 Other Calculi

OBDDs (Ordered Binary Decision Diagrams):

Minimized graph representation of decision trees, based on a fixed ordering on propo-
sitional variables,

see script of the Computational Logic course,

see Chapter 6.1/6.2 of Michael Huth and Mark Ryan: Logic in Computer Science:
Modelling and Reasoning about Systems, Cambridge Univ. Press, 2000.

FRAIGs (Fully Reduced And-Inverter Graphs)

Minimized graph representation of boolean circuits.

25

1.11 Example: SUDOKU

1 2 3 4 5 6 7 8 9
1 1
2 4
3 2

4 5 4 7
5 8 3
6 1 9

7 3 4 2
8 5 1
9 8 6

Idea: pd
i,j=true iff

the value of
square i, j is d

For example:
p8

3,5 = true

Coding SUDOKU by propositional clauses

• Concrete values result in units: pd
i,j

• For every value, column we generate: ¬pd
i,j ∨ ¬p

d
i,j+k

Accordingly for all rows and 3× 3 boxes

• For every square we generate: p1
i,j ∨ . . . ∨ p9

i,j

• For every two different values, square we generate: ¬pd
i,j ∨ ¬p

d′

i,j

• For every value, column we generate: pd
i,0 ∨ . . . ∨ pd

i,9

Accordingly for all rows and 3× 3 boxes

Constraint Propagation is Unit Propagation

1 2 3 4 5 6 7 8 9
1 1
2 4
3 2

4 5 4 7
5 8 3
6 1 9

7 3 4 7 2
8 5 1
9 8 6

From ¬p3
1,7 ∨ ¬p

3
5,7 and p3

1,7 we obtain by unit propagating ¬p3
5,7 and further from p1

5,7 ∨
p2

5,7 ∨ p3
5,7 ∨ p4

5,7 ∨ . . . ∨ p9
5,7 we get p1

5,7 ∨ p2
5,7 ∨ p4

5,7 ∨ . . . ∨ p9
5,7.

26

2 Linear Arithmetic (LA)

We consider boolean combinations of linear arithmetic atoms such as 3.5x− 4y ≥ 7 and
search rational values for the variables x, y such that the disequation holds.

2.1 Syntax

Syntax:

• non-logical symbols (domain-specific) (e.g. x, +, values from Q,≥)
⇒ terms, atomic formulas

• logical symbols (domain-independent) (e.g. ∧,→)
⇒ Boolean combinations (no quantification)

Signature

A signature

Σ = (Ω, Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,

• Π is a set of predicate symbols P with arity m ≥ 0, written arity(P) = m.

The linear arithmetic signature is
ΣLA = (Q ∪ {+,−, ∗}, {≥,≤, >, <})

Variables

Linear arithmetic admits the formulation of abstract, schematic assertions. (Object)
variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of) vari-
ables.

27

Context-Free Grammars

We define many of our notions on the bases of context-free grammars. Recall, that a
context-free grammar G = (N, T, P, S) consists of:

• a set of non-terminal symbols N

• a set of terminal symbols T

• a set P of rules A ::= w where A ∈ N and w ∈ (N ∪ T)∗

• a start symbol S where S ∈ N

For rules A ::= w1, A ::= w2 we write A ::= w1 | w2

Terms

Terms over ΣLA (resp., ΣLA-terms) are formed according to these syntactic rules:

s, t, u, v ::= x | q ∗ x | q , x ∈ X, q ∈ Q (variable, rational)
| s + t | s− t (sum, difference)

By TΣLA
(X) we denote the set of ΣLA-terms (over X). A term not containing any

variable is called a ground term. By TΣLA
we denote the set of ΣLA-ground terms.

Atoms

Atoms (also called atomic formulas) over ΣLA are formed according to this syntax:

A, B ::= s ≥ t | s ≤ t , s, t ∈ TΣLA
(X) (non-strict)

| s > t | s < t , s, t ∈ TΣLA
(X) (strict)

Quantifier Free Formulas

QFΣLA
(X) is the set of positive boolean formulas over ΣLA defined as follows:

F, G, H ::= ⊥ (falsum)
| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)

28

Linear Arithmetic Semantics

The ΣLA-algebra (also called ΣLA-interpretation or ΣLA-structure) is the triple

ALA = (Q, (+ALA
,−ALA

, ∗ALA
), (≤ALA

,≥ALA
, <ALA

, >ALA
))

where +ALA
,−ALA

, ∗ALA
,≤ALA

,≥ALA
, <ALA

, >ALA
are the “standard” intepretations of

+,−, ∗,≤,≥, <, >, respectively.

Linear Arithmetic Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined
externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation for linear arithmetic is a map β : X →
Q.

Truth Value of a Formula with Respect to β

ALA(β) : QFΣLA
(X)→ {0, 1} is defined inductively as follows:

ALA(β)(⊥) = 0

ALA(β)(⊤) = 1

ALA(β)(s ♯ t) = 1 ⇔ (ALA(β)(s) ♯ALA
ALA(β)(t))

♯ ∈ {≤,≥, <, >}

ALA(β)(¬F) = 1 ⇔ ALA(β)(F) = 0

ALA(β)(FρG) = Bρ(ALA(β)(F),ALA(β)(G))

with Bρ the Boolean function associated with ρ

ALA(β)(x) = β(x), ALA(β)(s ◦ t) = ALA(β)(s) ◦ALA
ALA(β)(t), ◦ ∈ {+,−, ∗}, ALA(β)(q) =

q for all q ∈ Q.

2.2 Models, Validity, and Satisfiability

F is valid in ALA under assignment β:

ALA, β |= F :⇔ ALA(β)(F) = 1

F is valid in ALA (ALA is a model of F):

ALA |= F :⇔ ALA, β |= F, for all β ∈ X → Q

F is called satisfiable iff there exist a β such that ALA, β |= F . Otherwise F is called
unsatisfiable.

29

On Quantification

Linear arithmetic can also be considered with respect to quantification. The quantifiers
are ∃ meaning “there exists” and ∀ meaning “for all”. For example, ∃x (x ≥ 0) is valid
(or true) in ALA, ∀x (x ≥ 0) is unsatisfiable (or false) and ∀x (x ≥ 0 ∨ x < 0) is again
valid.

Note that a quantifier free formula is satisfiable iff the existential closure of the formula
is valid. If we introduce new free constants ci for the variables xi of a quantifier free
formula, where ALA(ci) = qi for some qi ∈ Q, then a quantifier free formula is satisfiable
iff the same formula where variables are replaced by new free constants is satisfiable.

Some Important LA Equivalences

Proposition 2.1 The following equivalences are valid for all LA terms s, t:

¬s ≥ t↔ s < t
¬s ≤ t↔ s > t (Negation)

(s = t)↔ (s ≤ t ∧ s ≥ t) (Equality)

s ≥ t↔ t ≤ s
s > t↔ t < s (Swap)

With . we abbreviate < or ≤.

The Fourier-Motzkin Procedure

boolean FM(Set N of LA atoms) {
if (N = ∅) return true;
elsif (N is ground) return ALA(N);
else {

select a variable x from N ;
transform all atoms in N containing x into si . x, x . tj
and the subset N ′ of atoms not containing x;
compute N∗ := {si .i, j tj | si .i x ∈ N , x .j tj ∈ N for all i, j}
where .i, j is strict iff at least one of .i, .j is strict
return FM(N ′ ∪N∗);

}

}

30

Properties of the Fourier-Motzkin Procedure

• Any ground set N of linear arithmetic atoms can be easily decided.

• FM(N) terminates on any N as in recursive calls N has strictly less variables.

• The set N ′ ∪N∗ is worst case of size O(|N |2).

• FM(N)=true iff N is satisfiable in ALA.

• The procedure was invented by Fourier (1826), forgotten, and then rediscovered
by Dines (1919) and Motzkin (1936).

• There are more efficient methods known, e.g., the simplex algorithm.

2.3 The DPLL(T) Procedure

Goal:
Given a propositional formula in CNF (or alternatively, a finite set N of clauses), where
the atoms represent ground formulas over some theory T , check whether it is satisfiable
in T . (and optionally: output one solution, if it is satisfiable).

Assumption:
Again, clauses contain neither duplicated literals nor complementary literals.

Remark:
We will use LA as an ongoing example for T and consider DPLL(LA).

On LA as a Theory

We consider a specific formula language together with a satisfiability check for conjunc-
tions of atoms (literals) as a theory T . Note that a valuation M is interpreted as the
conjunction of its literals.

Later on we will introduce theory notions based on sets of formulas or models.

For LA we consider the language defined before and Fourier-Motzkin as the satisfiabil-
ity check for conjunctions of atoms. Variables in formulas without quantification can
actually be considered as constants.

Notions with Respect to the Theory T

If a partial valuation M is T -consistent (satisfiable) and F a formula such that
M |=T F , then we say that M is a T -model of F .

If F and G are formulas then F entails G in T , written F |=T G if F ∧ ¬G is
T -inconsistent.

Example: x > 1 6|= x > 0 but x > 1 |=LA x > 0

31

Remark

M stands again for a list of propositional literals. As every propositional literal stands
for a ground literal from T , there are actually two interpretations of M . We write
M |= F if F is entailed by M propositionally. We write M |=T F if the T ground
formulas represented by M entail F .

DPLL(T) Rules from DPLL

Unit Propagate:

M ‖ N ∪ {C ∨ L} ⇒DPLL(T) M L ‖ N ∪ {C ∨ L}

if C is false under M and L is undefined under M .

Decide:

M ‖ N ⇒DPLL(T) M Ld ‖ N

if L is undefined under M .

Fail:

M ‖ N ∪ {C} ⇒DPLL(T) fail

if C is false under M and M contains no decision literals.

Specific DPLL(T) Rules

T -Backjump:

M Ld M ′ ‖ N ∪ {C} ⇒DPLL(T) M L′ ‖ N ∪ {C}

if M Ld M ′ |= ¬C
there is some “backjump clause” C ′ ∨ L′ such that
N ∪ {C} |=T C ′ ∨ L′ and M |= ¬C ′

L′ is undefined under M , and
L′ or L′ occurs in N or in M Ld M ′.

T -Learn:

M ‖ N ⇒DPLL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

T -Forget:

M ‖ N ∪ {C} ⇒DPLL(T) M ‖ N

32

if N |=T C.

T -Propagate:

M ‖ N ⇒DPLL(T) M L ‖ N

if M |=T L where L is undefined in M and
L or L occurs in N .

DPLL(T) Properties

The DPLL modulo theories system DPLL(T) consists of the rules Decide, Fail, Unit-
Propagate, T -Propagate, T -Backjump, T -Learn and T -Forget.

The Lemma 1.14 and the Lemma 1.15 from DPLL hold accordingly for DPLL(T). Again
we will reconsider termination when the needed notions on orderings are established.

Lemma 2.2 If ∅ ‖ N ⇒∗
DPLL(T) M ‖ N ′ and there is some conflicting clause in M ‖ N ′,

that is, M |= ¬C for some clause C in N , then either Fail or T -Backjump applies to
M ‖ N ′.

Proof. As in Lemma 1.16. 2

Lemma 2.3 If ∅ ‖ N ⇒∗
DPLL(T) M ‖ N ′ and M is T -inconsistent, then either there is a

conflicting clause in M ‖ N ′, or else T -Learn applies to M ‖ N ′, generating a conflicting
clause. (Proof follows)

Proof. If M is T -inconsistent, then there exists a subsequence (L1, . . . , Ln) of M such
that ∅ |=T L1 ∨ . . . ∨ Ln. Hence the conflicting clause L1 ∨ . . . ∨ Ln is either in M ‖ N ′,
or else it can be learned by one T -Learn step. 2

Theorem 2.4 Consider a derivation ∅ ‖ N ⇒∗
DPLL(T) S, where no more rule of the

DPLL(T) procedure is applicable to S except T -Learn or T -forget, and if S has the form
M ‖ N ′ then M is T -consistent. Then

(1) S is fail iff N is T -unsatisfiable.

(2) If S has the form M ‖ N ′, then M is a T -model of N .

33

3 First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive (e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

• non-logical symbols (domain-specific)
⇒ terms, atomic formulas

• logical symbols (domain-independent)
⇒ Boolean combinations, quantifiers

Signature

A signature

Σ = (Ω, Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0, written arity(f) = n,

• Π is a set of predicate symbols P with arity m ≥ 0, written arity(P) = m.

If n = 0 then f is also called a constant (symbol).
If m = 0 then P is also called a propositional variable.
We use letters P , Q, R, S, to denote predicate symbols.

Refined concept for practical applications:
many-sorted signatures (corresponds to simple type systems in programming languages);
not so interesting from a logical point of view.

34

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) vari-
ables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of) vari-
ables.

Context-Free Grammars

We define many of our notions on the bases of context-free grammars. Recall, that a
context-free grammar G = (N, T, P, S) consists of:

• a set of non-terminal symbols N

• a set of terminal symbols T

• a set P of rules A ::= w where A ∈ N and w ∈ (N ∪ T)∗

• a start symbol S where S ∈ N

For rules A ::= w1, A ::= w2 we write A ::= w1 | w2

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)
| f(s1, ..., sn) , f ∈ Ω, arity(f) = n (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing any variable
is called a ground term. By TΣ we denote the set of Σ-ground terms.

In other words, terms are formal expressions with well-balanced brackets which we may
also view as marked, ordered trees. The markings are function symbols or variables. The
nodes correspond to the subterms of the term. A node v that is marked with a function
symbol f of arity n has exactly n subtrees representing the n immediate subterms of
v.

35

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

A, B ::= P (s1, ..., sm) , P ∈ Π, arity(P) = m[
| (s ≈ t) (equation)

]

Whenever we admit equations as atomic formulas we are in the realm of first-order logic
with equality . Admitting equality does not really increase the expressiveness of first-
order logic, (cf. exercises). But deductive systems where equality is treated specifically
are much more efficient.

Literals

L ::= A (positive literal)
| ¬A (negative literal)

Clauses

C, D ::= ⊥ (empty clause)
| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F, G, H ::= ⊥ (falsum)
| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧G) (conjunction)
| (F ∨G) (disjunction)
| (F → G) (implication)
| (F ↔ G) (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

36

Positions in terms, formulas

Positions of a term s (formula F):

pos(x) = {ε},
pos(f(s1, . . . , sn)) = {ε} ∪

⋃n

i=1{ ip | p ∈ pos(si) }.

pos(∀xF) = {ε} ∪ { 1p | p ∈ pos(F) }
Analogously for all other formulas.

Prefix order for p, q ∈ pos(s):

p above q: p ≤ q if pp′ = q for some p′,
p strictly above q: p < q if p ≤ q and not q ≤ p,
p and q parallel: p ‖ q if neither p ≤ q nor q ≤ p.

Subterm of s (F) at a position p ∈ pos(s):

s/ε = s,
f(s1, . . . , sn)/ip = si/p.

Analougously for formulas (F/p).

Replacement of the subterm at position p ∈ pos(s) by t:

s[t]ε = t,
f(s1, . . . , sn)[t]ip = f(s1, . . . , si[t]p, . . . , sn).

Analougously for formulas (F [G]p).

Size of a term s:

|s| = cardinality of pos(s).

Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∨ >p ∧ >p → >p ↔
(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

37

Qx1, . . . , xn F abbreviates Qx1 . . . Qxn F .

We use infix-, prefix-, postfix-, or mixfix-notation with the usual operator precedences.

Examples:
s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))
−s for −(s)
0 for 0()

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)
ΩPA = {0/0, +/2, ∗/2, s/1}
ΠPA = {≤ /2, < /2}
+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

∀x, y(x ≤ y ↔ ∃z(x + z ≈ y))
∃x∀y(x + y ≈ y)
∀x, y(x ∗ s(y) ≈ x ∗ y + x)
∀x, y(s(x) ≈ s(y)→ x ≈ y)
∀x∃y(x < y ∧ ¬∃z(x < z ∧ z < y))

Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can be defined in first-
order logic with equality just with the help of +. The first formula defines ≤, while the
second defines zero. The last formula, respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below) reintroduces the
“redundant” symbols.

Consequently there is a trade-off between the complexity of the quantification structure
and the complexity of the signature.

Bound and Free Variables

In QxF, Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx. An occurrence of
a variable x is called bound, if it is inside the scope of a quantifier Qx. Any other
occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

38

Example:

∀

scope︷ ︸︸ ︷

y (∀

scope︷ ︸︸ ︷
x P (x) → Q(x, y))

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of
x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all infer-
ence systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables occurring in
one of the terms σ(x), with x ∈ dom(σ), is denoted by codom(σ).

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise distinct, and then
denote the mapping

[s1/x1, . . . , sn/xn](y) =

{
si, if y = xi

y, otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

{
t, if y = x

σ(y), otherwise

39

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural
induction over the syntactic structure of t or F by the equations depicted on the next
page.

In the presence of quantification it is surprisingly complex: We need to make sure that
the (free) variables in the codomain of σ are not captured upon placing them into the
scope of a quantifier Qy, hence the bound variable must be renamed into a “fresh”, that
is, previously unused, variable z.

Why this definition of substitution is well-defined will be discussed below.

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f(s1, . . . , sn)σ = f(s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

P (s1, . . . , sn)σ = P (s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρ Gσ) ; for each binary connective ρ

(QxF)σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

Structural Induction

Proposition 3.1 Let G = (N, T, P, S) be a context-free grammar (possibly infinite)
and let q be a property of T ∗ (the words over the alphabet T of terminal symbols of G).

q holds for all words w ∈ L(G), whenever one can prove the following two properties:

1. (base cases)
q(w′) holds for each w′ ∈ T ∗ such that X ::= w′ is a rule in P .

2. (step cases)
If X ::= w0X0w1 . . . wnXnwn+1 is in P with Xi ∈ N , wi ∈ T ∗, n ≥ 0, then for all
w′

i ∈ L(G, Xi), whenever q(w′
i) holds for 0 ≤ i ≤ n, then also q(w0w

′
0w1 . . . wnw′

nwn+1)
holds.

40

Here L(G, Xi) ⊆ T ∗ denotes the language generated by the grammar G from the non-
terminal Xi.

Structural Recursion

Proposition 3.2 Let G = (N, T, P, S) be a unambiguous (why?) context-free gram-
mar. A function f is well-defined on L(G) (that is, unambiguously defined) whenever
these 2 properties are satisfied:

1. (base cases)
f is well-defined on the words w′ ∈ T ∗ for each rule X ::= w′ in P .

2. (step cases)
If X ::= w0X0w1 . . . wnXnwn+1 is a rule in P then f(w0w

′
0w1 . . . wnw′

nwn+1) is
well-defined, assuming that each of the f(w′

i) is well-defined.

Substitution Revisited

Q: Does Proposition 3.2 justify that our homomorphic extension

apply : FΣ(X)× (X → TΣ(X)) → FΣ(X),

with apply(F, σ) denoted by Fσ, of a substitution is well-defined?

A: We have two problems here. One is that “fresh” is (deliberately) left unspecified.
That can be easily fixed by adding an extra variable counter argument to the apply
function.

The second problem is that Proposition 3.2 applies to unary functions only. The standard
solution to this problem is to curryfy, that is, to consider the binary function as a unary
function producing a unary (residual) function as a result:

apply : FΣ(X) → ((X → TΣ(X))→ FΣ(X))

where we have denoted (apply(F))(σ) as Fσ.

E: Convince yourself that this does the trick.

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for the formulas.
The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values “true” and
“false” denoted by 1 and 0, respectively.

41

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (UA, (fA : Un → U)f∈Ω, (PA ⊆ Um
A)p∈Π)

where arity(f) = n, arity(P) = m, UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined
externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra A), is a map
β : X → UA.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X)→ UA

as follows:

A(β)(x) = β(x), x ∈ X
A(β)(f(s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)),

f ∈ Ω, arity(f) = n

In the scope of a quantifier we need to evaluate terms with respect to modified assign-
ments. To that end, let β[x 7→ a] : X → UA, for x ∈ X and a ∈ A, denote the
assignment

β[x 7→ a](y) :=

{
a if x = y

β(y) otherwise

42

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X)→ {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(P (s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ PA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F) = 1 ⇔ A(β)(F) = 0

A(β)(FρG) = Bρ(A(β)(F),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF) = min
a∈U
{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈U
{A(β[x 7→ a])(F)}

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n, m) 7→ n + m

∗N : (n, m) 7→ n ∗m

≤N = {(n, m) | n less than or equal to m}

<N = {(n, m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3
N(β)(x + y ≈ s(y)) = 1
N(β)(∀x, y(x + y ≈ y + x)) = 1
N(β)(∀z z ≤ y) = 0
N(β)(∀x∃y x < y) = 1

43

3.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A, β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A, β |= F, for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F, for all A ∈ Σ-Alg

F is called satisfiable iff there exist A and β such that A, β |= F . Otherwise F is called
unsatisfiable.

Substitution Lemma

The following propositions, to be proved by structural induction, hold for all Σ-algebras
A, assignments β, and substitutions σ.

Lemma 3.3 For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Proposition 3.4 For any Σ-formula F , A(β)(Fσ) = A(β ◦ σ)(F).

Corollary 3.5 A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution corresponds
to the semantic concept of an assignment.

44

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G, if for all A ∈ Σ-Alg

and β ∈ X → UA, whenever A, β |= F , then A, β |= G.

F and G are called equivalent, written F |=| G, if for all A ∈ Σ-Alg und β ∈ X → UA

we have A, β |= F ⇔ A, β |= G.

Proposition 3.6 F entails G iff (F → G) is valid

Proposition 3.7 F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e. g., N |= F

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA: if A, β |= G, for all G ∈ N , then A, β |= F .

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the
following proposition.

Proposition 3.8 Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is sufficient to design a
checker for unsatisfiability.

Theory of a Structure

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write down a formula
F (or a recursively enumerable set F of formulas) such that

Th(A) = {G | F |= G}?

Analogously for sets of structures.

45

Two Interesting Theories

Let ΣPres = ({0/0, s/1, +/2}, ∅) and Z+ = (Z, 0, s, +) its standard interpretation on the
integers. Th(Z+) is called Presburger arithmetic (M. Presburger, 1929). (There is no
essential difference when one, instead of Z, considers the natural numbers N as standard
interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323–332,
1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant
c ≥ 0 such that Th(Z+) 6∈ NTIME(22cn

)).

However, N∗ = (N, 0, s, +, ∗), the standard interpretation of ΣPA = ({0/0, s/1, +/2, ∗/2}, ∅),
has as theory the so-called Peano arithmetic which is undecidable, not even recursively
enumerable.

Note: The choice of signature can make a big difference with regard to the computational
complexity of theories.

3.4 Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F ?

Solve(A,F): find an assignment β such that A, β |= F .

Solve(F): find a substitution σ such that |= Fσ.

Abduce(F): find G with “certain properties” such that G |= F .

Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas. (One can easily
encode Turing machines in most signatures.)

2. For each signature Σ, the set of valid Σ-formulas is recursively enumerable. (We
will prove this by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is not recursively enu-
merable.

These complexity results motivate the study of subclasses of formulas (fragments) of
first-order logic

Q: Can you think of any fragments of first-order logic for which validity is decidable?

46

Some Decidable Fragments

Some decidable fragments:

• Monadic class: no function symbols, all predicates unary; validity is NEXPTIME-
complete.

• Variable-free formulas without equality: satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive atom): entailment is
decidable in linear time.

• Finite model checking is decidable in time polynomial in the size of the structure
and the formula.

47

3.5 Normal Forms and Skolemization (Traditional)

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The subsequent
normal form transformations are intended to eliminate many of them.

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . . Qnxn F,

where F is quantifier-free and Qi ∈ {∀, ∃}; we call Q1x1 . . . Qnxn the quantifier prefix
and F the matrix of the formula.

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G) ⇒P (F → G) ∧ (G→ F)
¬QxF ⇒P Qx¬F (¬Q)

((QxF) ρ G) ⇒P Qy(F [y/x] ρ G), y fresh, ρ ∈ {∧,∨}
((QxF)→ G) ⇒P Qy(F [y/x]→ G), y fresh
(F ρ (QxG)) ⇒P Qy(F ρ G[y/x]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i. e., ∀ = ∃ and ∃ = ∀.

Skolemization

Intuition: replacement of ∃y by a concrete choice function computing y from all the
arguments y depends on.

Transformation ⇒S (to be applied outermost, not in subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f(x1, . . . , xn)/y]

where f , where arity(f) = n, is a new function symbol (Skolem function).

Together: F
∗
⇒P G︸︷︷︸

prenex

∗
⇒S H︸︷︷︸

prenex, no ∃

Theorem 3.9 Let F , G, and H as defined above and closed. Then

48

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (w. r. t. Σ-Alg) ⇔ H satisfiable (w. r. t. Σ′-Alg) where Σ′ = (Ω ∪
SKF, Π), if Σ = (Ω, Π).

Clausal Normal Form (ConjunctiveNormal Form)

(F ↔ G) ⇒K (F → G) ∧ (G→ F)
(F → G) ⇒K (¬F ∨G)
¬(F ∨G) ⇒K (¬F ∧ ¬G)
¬(F ∧G) ⇒K (¬F ∨ ¬G)
¬¬F ⇒K F

(F ∧G) ∨H ⇒K (F ∨H) ∧ (G ∨H)
(F ∧ ⊤) ⇒K F
(F ∧ ⊥) ⇒K ⊥
(F ∨ ⊤) ⇒K ⊤
(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity of ∧ and ∨.
The first five rules, plus the rule (¬Q), compute the negation normal form (NNF) of a
formula.

The Complete Picture

F
∗
⇒P Q1y1 . . . Qnyn G (G quantifier-free)
∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸
clauses Ci︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of F .
Note: the variables in the clauses are implicitly universally quantified.

Theorem 3.10 Let F be closed. Then F ′ |= F . (The converse is not true in general.)

Theorem 3.11 Let F be closed. Then F is satisfiable iff F ′ is satisfiable iff N is
satisfiable

49

Optimization

Here is lots of room for optimization since we only can preserve satisfiability anyway:

• size of the CNF exponential when done naively;
but see the transformations we introduced for propositional logic

• want to preserve the original formula structure;

• want small arity of Skolem functions (follows)

3.6 Getting small Skolem Functions

• produce a negation normal form (NNF)

• apply miniscoping

• rename all variables

• skolemize

Negation Normal Form (NNF)

Apply the rewrite relation ⇒NNF , F is the overall formula:

G↔ H ⇒NNF (G→ H) ∧ (H → G)
if F/p = G↔ H and F/p has positive polarity

G↔ H ⇒NNF (G ∧H) ∨ (¬H ∧ ¬G)
if F/p = G↔ H and F/p has negative polarity

¬QxG ⇒NNF Qx¬G
¬(G ∨H) ⇒NNF ¬G ∧ ¬H
¬(G ∧H) ⇒NNF ¬G ∨ ¬H

G → H ⇒NNF ¬G ∨H
¬¬G ⇒NNF G

Miniscoping

Apply the rewrite relation ⇒MS. For the below rules we assume that x occurs freely in
G, H , but x does not occur freely in F :

Qx (G ∧ F) ⇒MS QxG ∧ F
Qx (G ∨ F) ⇒MS QxG ∨ F
∀x (G ∧H) ⇒MS ∀xG ∧ ∀xH
∃x (G ∨H) ⇒MS ∃xG ∨ ∃xH

50

Variable Renaming

Rename all variables in F such that there are no two different positions p, q with F/p =
QxG and F/q = Q′xH .

Standard Skolemization

Let F be the overall formula, then apply the rewrite rule:

∃xH ⇒SK H [f(y1, . . . , yn)/x]
if F/p = ∃xH and p has minimal length,
{y1, . . . , yn} are the free variables in ∃xH ,
f is a new function symbol, arity(f) = n

3.7 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall contains at least one
constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f(s1, . . . , sn), f ∈ Ω, arity(f) = n

f
fA(△, . . . ,△) =

△ . . . △

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P ∈ Π, arity(P) = m may be freely interpreted as
relations PA ⊆ Tm

Σ .

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand inter-
pretation A via

(s1, . . . , sn) ∈ PA :⇔ P (s1, . . . , sn) ∈ I

51

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.

Example: ΣPres = ({0/0, s/1, +/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres:
I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,
. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))
. . .
s(0) + 0 < s(0) + 0 + 0 + s(0)
. . .}

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F , if I |= F .

Theorem 3.13 (Herbrand) Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)
⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the set of ground
instances of N .

[The proof will be given below in the context of the completeness proof for resolution.]

Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))
(s(0) < 0) ∨ (0 ≤ s(s(0)))
. . .
(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))
. . .

52

3.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . , Fn, Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises︷ ︸︸ ︷
F1 . . . Fn

Fn+1︸︷︷︸
conclusion

.

Clausal inference system: premises and conclusions are clauses. One also considers
inference systems over other data structures (cf. below).

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence
F1, . . . , Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N , or else there exists an inference

Fi1 . . . Fini

Fi

in Γ, such that 0 ≤ ij < i, for 1 ≤ j ≤ ni.

Soundness and Completeness

Provability ⊢Γ of F from N in Γ: N ⊢Γ F :⇔ there exists a proof Γ of F from N .

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . , Fn |= F

Γ is called complete :⇔

N |= F ⇒ N ⊢Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N ⊢Γ ⊥

53

Proposition 3.14

(i) Let Γ be sound. Then N ⊢Γ F ⇒ N |= F

(ii) N ⊢Γ F ⇒ there exist F1, . . . , Fn ∈ N s.t. F1, . . . , Fn ⊢Γ F (resembles compact-
ness).

Proofs as Trees

markings =̂ formulas
leaves =̂ assumptions and axioms

other nodes =̂ inferences: conclusion =̂ ancestor
premises =̂ direct descendants

P (f(c))

P (f(c)) ∨ Q(b)

P (f(c)) ∨ Q(b) ¬P (f(c)) ∨ ¬P (f(c)) ∨ Q(b)

¬P (f(c)) ∨ Q(b) ∨ Q(b)

¬P (f(c)) ∨ Q(b)

Q(b) ∨ Q(b)

Q(b) ¬P (f(c)) ∨ ¬Q(b)

¬P (f(c))

⊥

3.9 Propositional Resolution

We observe that propositional clauses and ground clauses are the same concept.

In this section we only deal with ground clauses.

The Resolution Calculus Res

Resolution inference rule:

D ∨A ¬A ∨ C

D ∨ C

Terminology: D ∨ C: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨A

C ∨A

These are schematic inference rules; for each substitution of the schematic variables C,
D, and A, respectively, by ground clauses and ground atoms we obtain an inference
rule.

As “∨” is considered associative and commutative, we assume that A and ¬A can occur
anywhere in their respective clauses.

54

Sample Refutation

1. ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b) (given)
2. P (f(c)) ∨Q(b) (given)
3. ¬P (g(b, c)) ∨ ¬Q(b) (given)
4. P (g(b, c)) (given)
5. ¬P (f(c)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)
6. ¬P (f(c)) ∨Q(b) (Fact. 5.)
7. Q(b) ∨Q(b) (Res. 2. into 6.)
8. Q(b) (Fact. 7.)
9. ¬P (g(b, c)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

Resolution with Implicit Factorization RIF

D ∨A ∨ . . . ∨A ¬A ∨ C

D ∨ C

1. ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b) (given)
2. P (f(c)) ∨Q(b) (given)
3. ¬P (g(b, c)) ∨ ¬Q(b) (given)
4. P (g(b, c)) (given)
5. ¬P (f(c)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)
6. Q(b) ∨Q(b) ∨Q(b) (Res. 2. into 5.)
7. ¬P (g(b, c)) (Res. 6. into 3.)
8. ⊥ (Res. 4. into 7.)

Soundness of Resolution

Theorem 3.15 Propositional resolution is sound.

Proof. Let I ∈ Σ-Alg. To be shown:

(i) for resolution: I |= D ∨A, I |= C ∨ ¬A ⇒ I |= D ∨ C

(ii) for factorization: I |= C ∨A ∨A ⇒ I |= C ∨A

(i): Assume premises are valid in I. Two cases need to be considered:
If I |= A, then I |= C, hence I |= D ∨ C.
Otherwise, I |= ¬A, then I |= D, and again I |= D ∨ C.
(ii): even simpler. 2

Note: In propositional logic (ground clauses) we have:

55

1. I |= L1 ∨ . . . ∨ Ln ⇔ there exists i: I |= Li.

2. I |= A or I |= ¬A.

This does not hold for formulas with variables!

56

3.10 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥, or equivalently: If N 6⊢Res ⊥, then N
has a model.

• Idea: Suppose that we have computed sufficiently many inferences (and not derived
⊥).

• Now order the clauses in N according to some appropriate ordering, inspect the
clauses in ascending order, and construct a series of Herbrand interpretations.

• The limit interpretation can be shown to be a model of N .

Clause Orderings

1. We assume that ≻ is any fixed ordering on ground atoms that is total and well-
founded. (There exist many such orderings, e. g., the lenght-based ordering on
atoms when these are viewed as words over a suitable alphabet.)

2. Extend ≻ to an ordering ≻L on ground literals:

[¬]A ≻L [¬]B , if A ≻ B
¬A ≻L A

3. Extend ≻L to an ordering ≻C on ground clauses:
≻C = (≻L)mul, the multi-set extension of ≻L.

Notation: ≻ also for ≻L and ≻C .

Example

Suppose A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0. Then:

A0 ∨ A1

≺ A1 ∨ A2

≺ ¬A1 ∨ A2

≺ ¬A1 ∨A4 ∨ A3

≺ ¬A1 ∨ ¬A4 ∨ A3

≺ ¬A5 ∨ A5

57

Properties of the Clause Ordering

Proposition 3.16

1. The orderings on literals and clauses are total and well-founded.

2. Let C and D be clauses with A = max(C), B = max(D), where max(C) denotes
the maximal atom in C.

(i) If A ≻ B then C ≻ D.

(ii) If A = B, A occurs negatively in C but only positively in D, then C ≻ D.

Stratified Structure of Clause Sets

Let A ≻ B. Clause sets are then stratified in this form:

{

{
...

...
≺

A

B
. . . ∨ B

. . .
. . . ∨ B ∨ B

. . .
¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .
¬A ∨ . . .

. . .

all D where max(D) = B

all C where max(C) = A

Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}
Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪Resn(N), for n ≥ 0
Res∗(N) =

⋃
n≥0 Resn(N)

N is called saturated (w. r. t. resolution), if Res(N) ⊆ N .

Proposition 3.17

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground clauses:

N |= ⊥ ⇔ ⊥ ∈ Res∗(N)

58

Construction of Interpretations

Given: set N of ground clauses, atom ordering ≻.
Wanted: Herbrand interpretation I such that

• “many” clauses from N are valid in I;

• I |= N , if N is saturated and ⊥ 6∈ N .

Construction according to ≻, starting with the minimal clause.

Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C, one already has a partial interpretation IC (initially IC = ∅)
available.

• If C is true in the partial interpretation IC , nothing is done. (∆C = ∅).

• If C is false, one would like to change IC such that C becomes true.

• Changes should, however, be monotone. One never deletes anything from IC and
the truth value of clauses smaller than C should be maintained the way it was in
IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC , if A occurs positively
in C (adding A will make C become true) and if this occurrence in C is strictly
maximal in the ordering on literals (changing the truth value of A has no effect on
smaller clauses).

Construction of Candidate Interpretations

Let N,≻ be given. We define sets IC and ∆C for all ground clauses C over the given
signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=





{A}, if C ∈ N , C = C ′ ∨A, A ≻ C ′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate interpretation for N (w. r. t. ≻) is given as I≻
N :=

⋃
C ∆C . (We also simply

write IN or I for I≻
N if ≻ is either irrelevant or known from the context.)

59

Example

Let A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0 (max. literals in red)

clauses C IC ∆C Remarks

1 ¬A0 ∅ ∅ true in IC

2 A0 ∨A1 ∅ {A1} A1 maximal
3 A1 ∨A2 {A1} ∅ true in IC

4 ¬A1 ∨A2 {A1} {A2} A2 maximal
5 ¬A1 ∨ A4 ∨A3 ∨A0 {A1, A2} {A4} A4 maximal
6 ¬A1 ∨ ¬A4 ∨A3 {A1, A2, A4} ∅ A3 not maximal;

min. counter-ex.
7 ¬A1 ∨A5 {A1, A2, A4} {A5}

I = {A1, A2, A4, A5} is not a model of the clause set
⇒ there exists a counterexample.

Structure of N,≻

Let A ≻ B; producing a new atom does not affect smaller clauses.

{

{
...

...
≺

possibly productive

A

B
. . . ∨ B. . .
. . . ∨ B ∨ B. . .
¬B ∨ . . .

. . . ∨ A. . .

. . . ∨ A ∨ A. . .
¬A ∨

all D with max(D) = B

all C with max(C) = A

Some Properties of the Construction

Proposition 3.18

(i) C = ¬A ∨ C ′ ⇒ no D � C produces A.

(ii) C productive ⇒ IC ∪∆C |= C.

(iii) Let D′ ≻ D � C. Then

ID ∪∆D |= C ⇒ ID′ ∪∆D′ |= C and IN |= C.

60

If, in addition, C ∈ N or max(D) ≻ max(C):

ID ∪∆D 6|= C ⇒ ID′ ∪∆D′ 6|= C and IN 6|= C.

(iv) Let D′ ≻ D ≻ C. Then

ID |= C ⇒ ID′ |= C and IN |= C.

If, in addition, C ∈ N or max(D) ≻ max(C):

ID 6|= C ⇒ ID′ 6|= C and IN 6|= C.

(v) D = C ∨ A produces A ⇒ IN 6|= C.

Resolution Reduces Counterexamples

¬A1 ∨ A4 ∨ A3 ∨A0 ¬A1 ∨ ¬A4 ∨ A3

¬A1 ∨ ¬A1 ∨A3 ∨A3 ∨ A0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

¬A0 ∅ ∅
A0 ∨ A1 ∅ {A1}
A1 ∨ A2 {A1} ∅
¬A1 ∨ A2 {A1} {A2}

¬A1 ∨ ¬A1 ∨A3 ∨ A3 ∨ A0 {A1, A2} ∅ A3 occurs twice
minimal counter-ex.

¬A1 ∨A4 ∨ A3 ∨ A0 {A1, A2} {A4}
¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A4} ∅ counterexample

¬A1 ∨ A5 {A1, A2, A4} {A5}

The same I, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

¬A1 ∨ ¬A1 ∨A3 ∨ A3 ∨ A0

¬A1 ∨ ¬A1 ∨ A3 ∨A0

Construction of I for the extended clause set:

61

clauses C IC ∆C Remarks

¬A0 ∅ ∅
A0 ∨ A1 ∅ {A1}
A1 ∨ A2 {A1} ∅
¬A1 ∨ A2 {A1} {A2}

¬A1 ∨ ¬A1 ∨ A3 ∨ A0 {A1, A2} {A3}
¬A1 ∨ ¬A1 ∨A3 ∨ A3 ∨ A0 {A1, A2, A3} ∅ true in IC

¬A1 ∨A4 ∨ A3 ∨ A0 {A1, A2, A3} ∅
¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A3} ∅ true in IC

¬A3 ∨ A5 {A1, A2, A3} {A5}

The resulting I = {A1, A2, A3, A5} is a model of the clause set.

Model Existence Theorem

Theorem 3.19 (Bachmair & Ganzinger 1990) Let ≻ be a clause ordering, let N
be saturated w. r. t. Res, and suppose that ⊥ 6∈ N . Then I≻

N |= N .

Corollary 3.20 Let N be saturated w. r. t. Res. Then N |= ⊥ ⇔ ⊥ ∈ N .

Proof of Theorem 3.19. Suppose ⊥ 6∈ N , but I≻
N 6|= N . Let C ∈ N minimal (in ≻)

such that I≻
N 6|= C. Since C is false in IN , C is not productive. As C 6= ⊥ there exists a

maximal atom A in C.

Case 1: C = ¬A ∨ C ′ (i. e., the maximal atom occurs negatively)
⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D′∨A ¬A∨C′

D′∨C′ , we infer that D′ ∨ C ′ ∈ N ,
and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C.

Case 2: C = C ′ ∨A ∨A. Then C′∨A∨A
C′∨A

yields a smaller counterexample C ′ ∨A ∈ N . ⇒
contradicts minimality of C. 2

Compactness of Propositional Logic

Theorem 3.21 (Compactness) Let N be a set of propositional formulas. Then N is
unsatisfiable, if and only if some finite subset M ⊆ N is unsatisfiable.

Proof. “⇐”: trivial.

“⇒”: Let N be unsatisfiable.
⇒ Res∗(N) unsatisfiable
⇒ ⊥ ∈ Res∗(N) by refutational completeness of resolution

62

⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)
⇒ ⊥ has a finite resolution proof P ;
choose M as the set of assumptions in P . 2

63

3.11 General Resolution

Propositional resolution:

refutationally complete,

in its most naive version: not guaranteed to terminate for satisfiable sets of clauses,
(improved versions do terminate, however)

in its naive form clearly inferior to the DPLL procedure (in its “full” form competitive).

And: in contrast to the DPLL procedure, resolution can be easily extended to non-
ground clauses.

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(f(a, b))¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, b))

¬Q(f(a, b)) Q(f(a, b))

⊥

[a/z′, f(a, b)/z] [a/y] [b/y] [a/x′, b/x]

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals (so that inferences become possi-
ble).

Idea:

Do not instantiate more than necessary to get complementary literals.

Idea: do not instantiate more than necessary:

64

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(z) ¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, x))

¬Q(z) Q(f(a, x))

¬Q(f(a, x)) Q(f(a, x))

⊥

[a/z′] [a/y] [b/y] [a/x′]

[f(a, x)/z]

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from taking the (ground)
instances of finitely many general clauses (with variables) effective and efficient.

Idea (Robinson 1965):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of general atoms;

• Only compute most general (minimal) unifiers.

Significance: The advantage of the method in (Robinson 1965) compared with (Gilmore
1960) is that unification enumerates only those instances of clauses that participate
in an inference. Moreover, clauses are not right away instantiated into ground
clauses. Rather they are instantiated only as far as required for an inference.
Inferences with non-ground clauses in general represent infinite sets of ground
inferences which are computed simultaneously in a single step.

Resolution for General Clauses

General binary resolution Res:

D ∨ B C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A, B) [resolution]

C ∨ A ∨B

(C ∨ A)σ
if σ = mgu(A, B) [factorization]

General resolution RIF with implicit factorization:

D ∨ B1 ∨ . . . ∨Bn C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A, B1, . . . , Bn)

[RIF]

65

For inferences with more than one premise, we assume that the variables in the premises
are (bijectively) renamed such that they become different to any variable in the other
premises. We do not formalize this. Which names one uses for variables is otherwise
irrelevant.

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si, ti terms or atoms) a multi-set of equality problems.

A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

A substitution σ is called more general than a substitution τ , denoted by σ ≤ τ , if
there exists a substitution ρ such that ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the
composition of σ and ρ as mappings. (Note that ρ ◦ σ has a finite domain as required
for a substitution.)

If a unifier of E is more general than any other unifier of E, then we speak of a most
general unifier of E, denoted by mgu(E).

Proposition 3.22

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ are equal up to
(bijective) variable renaming, for any x in X.

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 3.23 σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

Rule Based Naive Standard Unification

t
.
= t, E ⇒SU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒SU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒SU ⊥

x
.
= t, E ⇒SU x

.
= t, E[t/x]

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒SU x

.
= t, E

if t 6∈ X

66

SU: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk, with xi pairwise distinct, xi 6∈ var(uj), then E is called an

(equational problem in) solved form representing the solution σE = [u1/x1, . . . , uk/xk].

Proposition 3.24 If E is a solved form then σE is an mgu of E.

Theorem 3.25

1. If E ⇒SU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒SU ⊥ then E is not unifiable.

3. If E
∗
⇒SU E ′ with E ′ in solved form, then σE′ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let’s treat the case for the 4th
rule here. Suppose σ is a unifier of x

.
= t, that is, xσ = tσ. Thus, σ ◦ [t/x] = σ[x 7→ tσ] =

σ[x 7→ xσ] = σ. Therefore, for any equation u
.
= v in E: uσ = vσ, iff u[t/x]σ = v[t/x]σ.

(2) and (3) follow by induction from (1) using Proposition 3.24. 2

Main Unification Theorem

Theorem 3.26 E is unifiable if and only if there is a most general unifier σ of E, such
that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Problem: exponential growth of terms possible

Proof of Theorem 3.26. • ⇒SU is Noetherian. A suitable lexicographic ordering
on the multisets E (with ⊥ minimal) shows this. Compare in this order:

1. the number of defined variables (d.h. variables x in equations x
.
= t with

x 6∈ var(t)), which also occur outside their definition elsewhere in E;

2. the multi-set ordering induced by (i) the size (number of symbols) in an
equation; (ii) if sizes are equal consider x

.
= t smaller than t

.
= x, if t 6∈ X.

2

• A system E that is irreducible w. r. t. ⇒SU is either ⊥ or a solved form.

• Therefore, reducing any E by SU will end (no matter what reduction strategy we
apply) in an irreducible E ′ having the same unifiers as E, and we can read off the
mgu (or non-unifiability) of E from E ′ (Theorem 3.25, Proposition 3.24).

• σ is idempotent because of the substitution in rule 4. dom(σ) ∪ codom(σ) ⊆
var(E), as no new variables are generated.

67

Rule Based Polynomial Unification

t
.
= t, E ⇒PU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒PU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒PU ⊥

x
.
= y, E ⇒PU x

.
= y, E[y/x]

if x ∈ var(E), x 6= y

x1
.
= t1, . . . , xn

.
= tn, E ⇒PU ⊥

if there are positions pi with ti/pi = xi+1, tn/pn = x1 and some pi 6= ǫ

x
.
= t, E ⇒PU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒PU x

.
= t, E

if t 6∈ X

x
.
= t, x

.
= s, E ⇒PU x

.
= t, t

.
= s, E

if t, s 6∈ X and |t| ≤ |s|

Properties of PU

Theorem 3.27

1. If E ⇒PU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗
⇒PU ⊥ then E is not unifiable.

3. If E
∗
⇒PU E ′ with E ′ in solved form, then σE′ is an mgu of E.

The solved form of ⇒PU is different form the solved form obtained from ⇒SU . In
order to obtain a unifier, the substitutions generated by the single equations have to be
composed.

Lifting Lemma

Lemma 3.28 Let C and D be variable-disjoint clauses. If

Dy σ

Dσ

Cy ρ

Cρ
C ′

[propositional resolution]

68

then there exists a substitution τ such that

D C

C ′′
y τ

C ′ = C ′′τ

[general resolution]

An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Corollary 3.29 Let N be a set of general clauses saturated under Res, i. e., Res(N) ⊆
N . Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

Proof. W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Other-
wise make them disjoint, and this renaming process changes neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable ground instances Dσ and Cρ
of N with resolvent C ′, or else (ii) C ′ is a factor of a ground instance Cσ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent C ′′ with
C ′′τ = C ′, for a suitable substitution τ . As C ′′ ∈ N by assumption, we obtain that
C ′ ∈ GΣ(N).

Case (ii): Similar. 2

Herbrand’s Theorem

Lemma 3.30 Let N be a set of Σ-clauses, let A be an interpretation. Then A |= N
implies A |= GΣ(N).

Lemma 3.31 Let N be a set of Σ-clauses, let A be a Herbrand interpretation. Then
A |= GΣ(N) implies A |= N .

Theorem 3.32 (Herbrand) A set N of Σ-clauses is satisfiable if and only if it has a
Herbrand model over Σ.

69

Proof. The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res∗(N))

⇒ IGΣ(Res∗(N)) |= GΣ(Res∗(N)) (Thm. 3.19; Cor. 3.29)

⇒ IGΣ(Res∗(N)) |= Res∗(N) (Lemma 3.31)

⇒ IGΣ(Res∗(N)) |= N (N ⊆ Res∗(N)) 2

The Theorem of Löwenheim-Skolem

Theorem 3.33 (Löwenheim–Skolem) Let Σ be a countable signature and let S be
a set of closed Σ-formulas. Then S is satisfiable iff S has a model over a countable
universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite. Now
generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at
most countably many new Skolem functions to Σ′. As Σ′ is countable, so is TΣ′, the
universe of Herbrand-interpretations over Σ′. Now apply Theorem 3.32. 2

Refutational Completeness of General Resolution

Theorem 3.34 Let N be a set of general clauses where Res(N) ⊆ N . Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof. Let Res(N) ⊆ N . By Corollary 3.29: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 3.30/3.31; Theorem 3.32)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N 2

Compactness of Predicate Logic

Theorem 3.35 (Compactness Theorem for First-Order Logic) Let Φ be a set of
first-order formulas. Φ is unsatisfiable ⇔ some finite subset Ψ ⊆ Φ is unsatisfiable.

Proof. The “⇐” part is trivial. For the “⇒” part let Φ be unsatisfiable and let N be
the set of clauses obtained by Skolemization and CNF transformation of the formulas
in Φ. Clearly Res∗(N) is unsatisfiable. By Theorem 3.34, ⊥ ∈ Res∗(N), and therefore
⊥ ∈ Resn(N) for some n ∈ N. Consequently, ⊥ has a finite resolution proof B of depth
≤ n. Choose Ψ as the subset of formulas in Φ such that the corresponding clauses

contain the assumptions (leaves) of B. 2

70

3.12 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 3.19) one only needs to
resolve and factor maximal atoms
⇒ if the calculus is restricted to inferences involving maximal atoms, the proof
remains correct
⇒ order restrictions

2. In the proof, it does not really matter with which negative literal an inference is
performed
⇒ choose a negative literal don’t-care-nondeterministically
⇒ selection

Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨A

Resolution Calculus Res≻S

In the completeness proof, we talk about (strictly) maximal literals of ground clauses.

In the non-ground calculus, we have to consider those literals that correspond to (strictly)
maximal literals of ground instances:

Let ≻ be a total and well-founded ordering on ground atoms. A literal L is called
[strictly] maximal in a clause C if and only if there exists a ground substitution σ such
that for no other L′ in C: Lσ ≺ L′σ [Lσ � L′σ].

Let ≻ be an atom ordering and S a selection function.

D ∨B C ∨ ¬A

(D ∨ C)σ
[ordered resolution with selection]

71

if σ = mgu(A, B) and

(i) Bσ strictly maximal w. r. t. Dσ;

(ii) nothing is selected in D by S;

(iii) either ¬A is selected, or else nothing is selected in C ∨ ¬A and ¬Aσ is maximal in
Cσ.

C ∨ A ∨B

(C ∨ A)σ
[ordered factoring]

if σ = mgu(A, B) and Aσ is maximal in Cσ and nothing is selected in C.

Special Case: Propositional Logic

For ground clauses the resolution inference simplifies to

D ∨A C ∨ ¬A

D ∨ C

if

(i) A ≻ D;

(ii) nothing is selected in D by. S;

(iii) ¬A is selected in C ∨ ¬A, or else nothing is selected in C ∨ ¬A and ¬A � max(C).

Note: For positive literals, A ≻ D is the same as A ≻ max(D).

Search Spaces Become Smaller

1 A ∨ B

2 A ∨ ¬B
3 ¬A ∨B

4 ¬A ∨ ¬B
5 B ∨ B Res 1, 3
6 B Fact 5
7 ¬A Res 6, 4
8 A Res 6, 2
9 ⊥ Res 8, 7

we assume A ≻ B and
S as indicated by X .
The maximal literal in
a clause is depicted in
red.

With this ordering and selection function the refutation proceeds strictly determinis-
tically in this example. Generally, proof search will still be non-deterministic but the
search space will be much smaller than with unrestricted resolution.

72

Avoiding Rotation Redundancy

From

C1 ∨ A C2 ∨ ¬A ∨ B
C1 ∨ C2 ∨B C3 ∨ ¬B

C1 ∨ C2 ∨ C3

we can obtain by rotation

C1 ∨ A
C2 ∨ ¬A ∨ B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations are possible. However,
if A ≻ B, then the second proof does not fulfill the orderings restrictions.

Conclusion: In the presence of orderings restrictions (however one chooses ≻) no rota-
tions are possible. In other words, orderings identify exactly one representant in any
class of rotation-equivalent proofs.

Lifting Lemma for Res≻S

Lemma 3.36 Let D and C be variable-disjoint clauses. If

Dy σ

Dσ

Cy ρ

Cρ
C ′

[propositional inference in Res≻S]

and if S(Dσ) ≃ S(D), S(Cρ) ≃ S(C) (that is, “corresponding” literals are selected),
then there exists a substitution τ such that

D C

C ′′
y τ

C ′ = C ′′τ

[inference in Res≻S]

An analogous lifting lemma holds for factorization.

73

Saturation of General Clause Sets

Corollary 3.37 Let N be a set of general clauses saturated under Res≻S , i. e., Res≻S (N) ⊆
N . Then there exists a selection function S ′ such that S|N = S ′|N and GΣ(N) is also
saturated, i. e.,

Res≻S′(GΣ(N)) ⊆ GΣ(N).

Proof. We first define the selection function S ′ such that S ′(C) = S(C) for all clauses
C ∈ GΣ(N)∩N . For C ∈ GΣ(N) \N we choose a fixed but arbitrary clause D ∈ N with
C ∈ GΣ(D) and define S ′(C) to be those occurrences of literals that are ground instances
of the occurrences selected by S in D. Then proceed as in the proof of Corollary 3.29
using the above lifting lemma. 2

Soundness and Refutational Completeness

Theorem 3.38 Let≻ be an atom ordering and S a selection function such that Res≻S (N) ⊆
N . Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof. The “⇐” part is trivial. For the “⇒” part consider first the propositional
level: Construct a candidate interpretation IN as for unrestricted resolution, except
that clauses C in N that have selected literals are not productive, even when they are
false in IC and when their maximal atom occurs only once and positively. The result
for general clauses follows using Corollary 3.37. 2

Craig-Interpolation

A theoretical application of ordered resolution is Craig-Interpolation:

Theorem 3.39 (Craig 1957) Let F and G be two propositional formulas such that
F |= G. Then there exists a formula H (called the interpolant for F |= G), such that H
contains only prop. variables occurring both in F and in G, and such that F |= H and
H |= G.

Proof. Translate F and ¬G into CNF. let N and M , resp., denote the resulting clause
set. Choose an atom ordering ≻ for which the prop. variables that occur in F but not in
G are maximal. Saturate N into N∗ w. r. t. Res≻S with an empty selection function S .
Then saturate N∗ ∪M w. r. t. Res≻S to derive ⊥. As N∗ is already saturated, due to the
ordering restrictions only inferences need to be considered where premises, if they are

74

from N∗, only contain symbols that also occur in G. The conjunction of these premises
is an interpolant H . The theorem also holds for first-order formulas. For universal
formulas the above proof can be easily extended. In the general case, a proof based on
resolution technology is more complicated because of Skolemization. 2

Redundancy

So far: local restrictions of the resolution inference rules using orderings and selection
functions.

Is it also possible to delete clauses altogether? Under which circumstances are clauses
unnecessary? (Conjecture: e. g., if they are tautologies or if they are subsumed by other
clauses.)

Intuition: If a clause is guaranteed to be neither a minimal counterexample nor produc-
tive, then we do not need it.

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is
called redundant w. r. t. N , if there exist C1, . . . , Cn ∈ N , n ≥ 0, such that Ci ≺ C and
C1, . . . , Cn |= C.

Redundancy for general clauses: C is called redundant w. r. t. N , if all ground instances
Cσ of C are redundant w. r. t. GΣ(N).

Intuition: Redundant clauses are neither minimal counterexamples nor productive.

Note: The same ordering ≺ is used for ordering restrictions and for redundancy (and
for the completeness proof).

Examples of Redundancy

Proposition 3.40 Some redundancy criteria:

• C tautology (i. e., |= C) ⇒ C redundant w. r. t. any set N .

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}.

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}.

(Under certain conditions one may also use non-strict subsumption, but this requires a
slightly more complicated definition of redundancy.)

75

Saturation up to Redundancy

N is called saturated up to redundancy (w. r. t. Res≻S)

:⇔ Res≻S (N \Red(N)) ⊆ N ∪ Red(N)

Theorem 3.41 Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof (Sketch). (i) Ground case:

• consider the construction of the candidate interpretation I≻
N for Res≻S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples for I≻
N

The premises of “essential” inferences are either minimal counterexamples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 3.38. 2

Monotonicity Properties of Redundancy

Theorem 3.42

(i) N ⊆M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N)⇒ Red(N) ⊆ Red(N \M)

We conclude that redundancy is preserved when, during a theorem proving process,
one adds (derives) new clauses or deletes redundant clauses. Recall that Red(N) may
include clauses that are not in N .

A Resolution Prover

So far: static view on completeness of resolution:

Saturated sets are inconsistent if and only if they contain ⊥.

We will now consider a dynamic view:

How can we get saturated sets in practice?

The theorems 3.41 and 3.42 are the basis for the completeness proof of our prover RP .

76

Rules for Simplifications and Deletion

We want to employ the following rules for simplification of prover states N :

• Deletion of tautologies

N ∪ {C ∨ A ∨ ¬A} ⇒ N

• Deletion of subsumed clauses

N ∪ {C, D} ⇒ N ∪ {C}

if Cσ ⊆ D (C subsumes D).

• Reduction (also called subsumption resolution)

N ∪ {C ∨ L, D ∨ Cσ ∨ Lσ} ⇒ N ∪ {C ∨ L, D ∨ Cσ}

Resolution Prover RP

3 clause sets: N(ew) containing new resolvents
P(rocessed) containing simplified resolvents
clauses get into O(ld) once their inferences have been computed

Strategy: Inferences will only be computed when there are no possibilities for simplifi-
cation

Transition Rules for RP (I)

Tautology elimination
NNN ∪ {C} | PPP | OOO ⇒RP NNN | PPP | OOO

if C is a tautology

Forward subsumption
NNN ∪ {C} | PPP | OOO ⇒RP NNN | PPP | OOO

if some D ∈ PPP ∪OOO subsumes C

Backward subsumption
NNN ∪ {C} | PPP ∪ {D} | OOO ⇒RP NNN ∪ {C} | PPP | OOO
NNN ∪ {C} | PPP | OOO ∪ {D} ⇒RP NNN ∪ {C} | PPP | OOO

if C strictly subsumes D

77

Transition Rules for RP (II)

Forward reduction
NNN ∪ {C ∨ L} | PPP | OOO ⇒RP NNN ∪ {C} | PPP | OOO

if there exists D ∨ L′ ∈ PPP ∪OOO
such that L = L′σ and Dσ ⊆ C

Backward reduction
NNN | PPP ∪ {C ∨ L} | OOO ⇒RP NNN | PPP ∪ {C} | OOO
NNN | PPP |OOO ∪ {C ∨ L} ⇒RP NNN | PPP ∪ {C} | OOO

if there exists D ∨ L′ ∈ NNN
such that L = L′σ and Dσ ⊆ C

Transition Rules for RP (III)

Clause processing
NNN ∪ {C} | PPP | OOO ⇒RP NNN | PPP ∪ {C} | OOO

Inference computation
∅ | PPP ∪ {C} | OOO ⇒RP NNN | PPP | OOO ∪ {C},

with NNN = Res≻S (OOO ∪ {C})

Soundness and Completeness

Theorem 3.43

N |= ⊥ ⇔ N | ∅ | ∅
∗
⇒RP N ′ ∪ {⊥} | |

Proof in L. Bachmair, H. Ganzinger: Resolution Theorem Proving appeared in the
Handbook of Automated Reasoning, 2001

Fairness

Problem:

If N is inconsistent, then N | ∅ | ∅
∗
⇒RP N ′ ∪ {⊥} | | .

Does this imply that every derivation starting from an inconsistent set N eventually
produces ⊥ ?

No: a clause could be kept in PPP without ever being used for an inference.

We need in addition a fairness condition:

78

If an inference is possible forever (that is, none of its premises is ever deleted), then
it must be computed eventually.

One possible way to guarantee fairness: Implement PPP as a queue (there are other
techniques to guarantee fairness).

With this additional requirement, we get a stronger result: If N is inconsistent, then
every fair derivation will eventually produce ⊥.

Hyperresolution

There are many variants of resolution. (We refer to [Bachmair, Ganzinger: Resolution
Theorem Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C. If we perform an
inference with C, then one of the selected literals is eliminated.

Suppose that the remaining selected literals of C are again selected in the conclusion.
Then we must eliminate the remaining selected literals one by one by further resolution
steps.

Hyperresolution replaces these successive steps by a single inference. As for Res≻S , the
calculus is parameterized by an atom ordering ≻ and a selection function S.

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨Dn ∨ C)σ

with σ = mgu(A1
.
= B1, . . . , An

.
= Bn), if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di;

(iii) the indicated occurrences of the ¬Ai are exactly the ones selected by S, or else
nothing is selected in the right premise and n = 1 and ¬A1σ is maximal in Cσ.

Similarly to resolution, hyperresolution has to be complemented by a factoring infer-
ence.

As we have seen, hyperresolution can be simulated by iterated binary resolution.

However this yields intermediate clauses which HR might not derive, and many of them
might not be extendable into a full HR inference.

79

3.13 Summary: Resolution Theorem Proving

• Resolution is a machine calculus.

• Subtle interleaving of enumerating ground instances and proving inconsistency
through the use of unification.

• Parameters: atom ordering ≻ and selection function S. On the non-ground level,
ordering constraints can (only) be solved approximatively.

• Completeness proof by constructing candidate interpretations from productive
clauses C ∨ A, A ≻ C; inferences with those reduce counterexamples.

• Local restrictions of inferences via ≻ and S
⇒ fewer proof variants.

• Global restrictions of the search space via elimination of redundancy
⇒ computing with “smaller” clause sets;
⇒ termination on many decidable fragments.

• However: not good enough for dealing with orderings, equality and more specific
algebraic theories (lattices, abelian groups, rings, fields)
⇒ further specialization of inference systems required.

3.14 Other Inference Systems

Instantiation-based methods for FOL:

• (Semantic) Tableau;

• Resolution-based instance generation;

• Disconnection calculus.

Further (mainly propositional) proof systems:

• Hilbert calculus;

• Sequent calculus;

• Natural deduction.

Instantiation-Based Methods for FOL

Idea:

Overlaps of complementary literals produce instantiations (as in resolution);

However, contrary to resolution, clauses are not recombined.

80

Instead: treat remaining variables as constant and use efficient propositional proof
methods, such as DPLL.

There are both saturation-based variants, such as partial instantiation [Hooker et
al.] or resolution-based instance generation (Inst-Gen) [Ganzinger and Korovin], and
tableau-style variants, such as the disconnection calculus [Billon; Letz and Stenz].

Hilbert Calculus

Hilbert calculus:

Direct proof method (proves a theorem from axioms, rather than refuting its negation)

Axiom schemes, e. g.,

F → (G→ F)
(F → (G→ H))→ ((F → G)→ (F → H))

plus Modus ponens:

F F → G

G

Unsuitable for both humans and machines.

Natural Deduction

Natural deduction (Prawitz):

Models the concept of proofs from assumptions as humans do it (cf. Fitting or Huth/Ryan).

Sequent Calculus

Sequent calculus (Gentzen):

Assumptions internalized into the data structure of sequents

F1, . . . , Fm → G1, . . . , Gk

meaning

F1 ∧ · · · ∧ Fm → G1 ∨ · · · ∨Gk

A kind of mixture between natural deduction and semantic tableaux.

Perfect symmetry between the handling of assumptions and their consequences.

Can be used both backwards and forwards.

81

4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by, e. g., resolution
theorem provers.

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve problems that are intuitively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the the-
orem prover.

4.1 Handling Equality Naively

Proposition 4.1 Let F be a closed first-order formula with equality. Let ∼ /∈ Π be a
new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)
∀x, y (x ∼ y → y ∼ x)

∀x, y, z (x ∼ y ∧ y ∼ z → x ∼ z)
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f(x1, . . . , xn) ∼ f(y1, . . . , yn))
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ p(x1, . . . , xm)→ p(y1, . . . , ym))

for every f ∈ Ω and p ∈ Π. Let F̃ be the formula that one obtains from F if every
occurrence of ≈ is replaced by ∼. Then F is satisfiable if and only if Eq(Σ) ∪ {F̃} is
satisfiable.

Proof. Let Σ = (Ω, Π), let Σ1 = (Ω, Π ∪ {∼}).

For the “only if” part assume that F is satisfiable and let A be a Σ-model of F . Then
we define a Σ1-algebra B in such a way that B and A have the same universe, fB = fA
for every f ∈ Ω, pB = pA for every p ∈ Π, and ∼B is the identity relation on the universe.
It is easy to check that B is a model of both F̃ and of Eq(Σ).

The proof of the “if” part consists of two steps.

Assume that the Σ1-algebra B = (UB, (fB : Un → U)f∈Ω, (pB ⊆ Um
B)p∈Π∪{∼}) is a model

of Eq(Σ) ∪ {F̃}. In the first step, we can show that the interpretation ∼B of ∼ in B is a
congruence relation. We will prove this for the symmetry property, the other properties
of congruence relations, that is, reflexivity, transitivity, and congruence with respect to
functions and predicates are shown analogously. Let a, a′ ∈ UB such that a ∼B a′. We
have to show that a′ ∼B a. Since B is a model of Eq(Σ), B(β)(∀x, y (x ∼ y → y ∼ x)) = 1
for every β, hence B(β[x 7→ b1, y 7→ b2])(x ∼ y → y ∼ x) = 1 for every β and every

82

b1, b2 ∈ UB. Set b1 = a and b2 = a′, then 1 = B(β[x 7→ a, y 7→ a′])(x ∼ y → y ∼ x) =
(a ∼B a′ → a′ ∼B a), and since a ∼B a′ holds by assumption, a′ ∼B a must also hold.

In the second step, we will now construct a Σ-algebra A from B and the congruence
relation∼B. Let [a] be the congruence class of an element a ∈ UB with respect to∼B. The
universe UA ofA is the set { [a] | a ∈ UB } of congruence classes of the universe of B. For a
function symbol f ∈ Ω, we define fA([a1], . . . , [an]) = [fB(a1, . . . , an)], and for a predicate
symbol p ∈ Π, we define ([a1], . . . , [an]) ∈ pA if and only if (a1, . . . , an) ∈ pB. Observe
that this is well-defined: If we take different representatives of the same congruence
class, we get the same result by congruence of ∼B. Now for every Σ-term t and every
B-assignment β, [B(β)(t)] = A(γ)(t), where γ is the A-assignment that maps every
variable x to [β(x)], and analogously for every Σ-formula G, B(β)(G̃) = A(γ)(G). Both
properties can easily shown by structural induction. Consequently, A is a model of F .

2

By giving the equality axioms explicitly, first-order problems with equality can in prin-
ciple be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence
axioms).

Roadmap

How to proceed:

• Arbitrary binary relations.

• Equations (unit clauses with equality):

Term rewrite systems.
Expressing semantic consequence syntactically.
Entailment for equations.

• Equational clauses:

Entailment for clauses with equality.

4.2 Abstract Reduction Systems

Abstract reduction system: (A,→), where

A is a set,

→ ⊆ A× A is a binary relation on A.

83

→0 = { (a, a) | a ∈ A } identity
→i+1 = →i ◦→ i + 1-fold composition
→+ =

⋃
i>0→

i transitive closure
→∗ =

⋃
i≥0→

i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure
→−1 = ← = { (b, c) | c→ b } inverse
↔ = →∪← symmetric closure
↔+ = (↔)+ transitive symmetric closure
↔∗ = (↔)∗ refl. trans. symmetric closure

b ∈ A is reducible, if there is a c such that b→ c.

b is in normal form (irreducible), if it is not reducible.

c is a normal form of b, if b→∗ c and c is in normal form.
Notation: c = b↓ (if the normal form of b is unique).

b and c are joinable, if there is a a such that b→∗ a←∗ c.
Notation: b ↓ c.

A relation → is called

Church-Rosser, if b↔∗ c implies b ↓ c.

confluent, if b←∗ a→∗ c implies b ↓ c.

locally confluent, if b← a→ c implies b ↓ c.

terminating, if there is no infinite descending chain b0 → b1 → b2 →

normalizing, if every b ∈ A has a normal form.

convergent, if it is confluent and terminating.

Lemma 4.2 If → is terminating, then it is normalizing.

Note: The reverse implication does not hold.

Theorem 4.3 The following properties are equivalent:

(i) → has the Church-Rosser property.

(ii) → is confluent.

Proof. (i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in
the derivation b↔∗ c. 2

84

Lemma 4.4 If → is confluent, then every element has at most one normal form.

Proof. Suppose that some element a ∈ A has normal forms b and c, then b←∗ a→∗ c.
If → is confluent, then b →∗ d ←∗ c for some d ∈ A. Since b and c are normal forms,
both derivations must be empty, hence b →0 d ←0 c, so b, c, and d must be identical.

2

Corollary 4.5 If → is normalizing and confluent, then every element b has a unique
normal form.

Proposition 4.6 If → is normalizing and confluent, then b↔∗ c if and only if b↓ = c↓.

Proof. Either using Thm. 4.3 or directly by induction on the length of the derivation
of b↔∗ c. 2

Well-Founded Orderings

Lemma 4.7 If → is a terminating binary relation over A, then →+ is a well-founded
partial ordering.

Proof. Transitivity of →+ is obvious; irreflexivity and well-foundedness follow from
termination of →. 2

Lemma 4.8 If > is a well-founded partial ordering and→ ⊆ >, then→ is terminating.

Proving Confluence

Theorem 4.9 (“Newman’s Lemma”) If a terminating relation → is locally conflu-
ent, then it is confluent.

Proof. Let → be a terminating and locally confluent relation. Then →+ is a well-
founded ordering. Define P (a) ⇔

(
∀b, c : b←∗ a→∗ c⇒ b ↓ c

)
.

We prove P (a) for all a ∈ A by well-founded induction over →+:

Case 1: b←0 a→∗ c: trivial.

Case 2: b←∗ a→0 c: trivial.

Case 3: b←∗ b′ ← a→ c′ →∗ c: use local confluence, then use the induction hypothesis.
2

85

Proving Termination: Monotone Mappings

Let (A, >A) and (B, >B) be partial orderings. A mapping ϕ : A→ B is called monotone,
if a >A a′ implies ϕ(a) >B ϕ(a′) for all a, a′ ∈ A.

Lemma 4.10 If ϕ : A → B is a monotone mapping from (A, >A) to (B, >B) and
(B, >B) is well-founded, then (A, >A) is well-founded.

4.3 Rewrite Systems

Let E be a set of equations.

The rewrite relation →E ⊆ TΣ(X)× TΣ(X) is defined by

s→E t iff there exist (l ≈ r) ∈ E, p ∈ pos(s),
and σ : X → TΣ(X),
such that s/p = lσ and t = s[rσ]p.

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expres-
sion). Contracting a redex means replacing it with the corresponding instance of the
rhs (right-hand side) of the rule.

An equation l ≈ r is also called a rewrite rule, if l is not a variable and var(l) ⊇ var(r).

Notation: l → r.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating, if the rewrite relation →E

or →R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

E-Algebras

Let E be a set of equations. A Σ-algebra A is called an E-algebra, if A |= ∀~x(s ≈ t) for
all ∀~x(s ≈ t) ∈ E.

If E |= ∀~x(s ≈ t) (i. e., ∀~x(s ≈ t) is valid in all E-algebras), we write this also as
s ≈E t.

Goal:
Use the rewrite relation→E to express the semantic consequence relation syntactically:

s ≈E t if and only if s↔∗
E t.

86

Let E be a set of equations over TΣ(X). The following inference system allows to derive
consequences of E:

E ⊢ t ≈ t (Reflexivity)

E ⊢ t ≈ t′

E ⊢ t′ ≈ t
(Symmetry)

E ⊢ t ≈ t′ E ⊢ t′ ≈ t′′

E ⊢ t ≈ t′′
(Transitivity)

E ⊢ t1 ≈ t′1 . . . E ⊢ tn ≈ t′n
E ⊢ f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)

(Congruence)

E ⊢ tσ ≈ t′σ (Instance)
if (t ≈ t′) ∈ E and σ : X → TΣ(X)

Lemma 4.11 The following properties are equivalent:

(i) s↔∗
E t

(ii) E ⊢ s ≈ t is derivable.

(Proof Scetch Follows)

Proof. (i)⇒(ii): s ↔E t implies E ⊢ s ≈ t by induction on the depth of the position
where the rewrite rule is applied; then s ↔∗

E t implies E ⊢ s ≈ t by induction on the
number of rewrite steps in s↔∗

E t.

(ii)⇒(i): By induction on the size (number of symbols) of the derivation for E ⊢ s ≈ t.
2

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X) let [t] = { t′ ∈ TΣ(X) | E ⊢ t ≈ t′ } be the congruence class of t.

Define a Σ-algebra TΣ(X)/E (abbreviated by T) as follows:

UT = { [t] | t ∈ TΣ(X) }.

fT ([t1], . . . , [tn]) = [f(t1, . . . , tn)] for f ∈ Ω.

Lemma 4.12 fT is well-defined: If [ti] = [t′i], then [f(t1, . . . , tn)] = [f(t′1, . . . , t
′
n)].

Proof. Follows directly from the Congruence rule for ⊢. 2

87

Lemma 4.13 T = TΣ(X)/E is an E-algebra. (Proof Follows)

Proof. Let ∀x1 . . . xn(s ≈ t) be an equation in E; let β be an arbitrary assignment.

We have to show that T (β)(∀~x(s ≈ t)) = 1, or equivalently, that T (γ)(s) = T (γ)(t) for
all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n] with [ti] ∈ UT .

Let σ = [t1/x1, . . . , tn/xn], then sσ ∈ T (γ)(s) and tσ ∈ T (γ)(t).

By the Instance rule, E ⊢ sσ ≈ tσ is derivable, hence T (γ)(s) = [sσ] = [tσ] = T (γ)(t).
2

Lemma 4.14 Let X be a countably infinite set of variables; let s, t ∈ TΣ(X). If
TΣ(X)/E |= ∀~x(s ≈ t), then E ⊢ s ≈ t is derivable. (Proof Follows)

Proof. Assume that T |= ∀~x(s ≈ t), i. e., T (β)(∀~x(s ≈ t)) = 1. Consequently,
T (γ)(s) = T (γ)(t) for all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n] with [ti] ∈ UT .

Choose ti = xi, then [s] = T (γ)(s) = T (γ)(t) = [t], so E ⊢ s ≈ t is derivable by
definition of T . 2

Theorem 4.15 (“Birkhoff’s Theorem”) Let X be a countably infinite set of vari-
ables, let E be a set of (universally quantified) equations. Then the following properties
are equivalent for all s, t ∈ TΣ(X):

(i) s↔∗
E t.

(ii) E ⊢ s ≈ t is derivable.

(iii) s ≈E t, i. e., E |= ∀~x(s ≈ t).

(iv) TΣ(X)/E |= ∀~x(s ≈ t).

Proof. (i)⇔(ii): Lemma 4.11.

(ii)⇒(iii): By induction on the size of the derivation for E ⊢ s ≈ t.

(iii)⇒(iv): Obvious, since T = TΣ(X)/E is an E-algebra.

(iv)⇒(ii): Lemma 4.14. 2

88

Universal Algebra

TΣ(X)/E = TΣ(X)/≈E = TΣ(X)/↔∗
E is called the free E-algebra with generating set

X/≈E = { [x] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E-algebra B can be extended to a homomor-
phism ϕ̂ : TΣ(X)/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔∗
E is called the initial E-algebra.

≈E = { (s, t) | E |= s ≈ t } is called the equational theory of E.

≈I
E = { (s, t) | TΣ(∅)/E |= s ≈ t } is called the inductive theory of E.

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}. Then x + y ≈I
E y + x, but

x + y 6≈E y + x.

Rewrite Relations

Corollary 4.16 If E is convergent (i. e., terminating and confluent), then s ≈E t if and
only if s↔∗

E t if and only if s↓E = t↓E .

Corollary 4.17 If E is finite and convergent, then ≈E is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.

Problems:

Show local confluence of E.

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and termi-
nating.

89

4.4 Critical Pairs

Showing local confluence (Sketch):

Problem: If t1 ←E t0 →E t2, does there exist a term s such that t1 →
∗
E s←∗

E t2 ?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable
position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further
investigation.

Question:
Are there rewrite rules l1 → r1 and l2 → r2 such that some subterm l1/p and l2 have
a common instance (l1/p)σ1 = l2σ2 ?

Observation:
If we assume w.o.l.o.g. that the two rewrite rules do not have common variables, then
only a single substitution is necessary: (l1/p)σ = l2σ.

Further observation:
The mgu of l1/p and l2 subsumes all unifiers σ of l1/p and l2.

Let li → ri (i = 1, 2) be two rewrite rules in a TRS R whose variables have been renamed
such that var(l1) ∩ var(l2) = ∅. (Remember that var(li) ⊇ var(ri).)

Let p ∈ pos(l1) be a position such that l1/p is not a variable and σ is an mgu of l1/p
and l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.

Theorem 4.18 (“Critical Pair Theorem”) A TRS R is locally confluent if and only
if all its critical pairs are joinable.

Proof. “only if”: obvious, since joinability of a critical pair is a special case of local
confluence.

“if”: Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at positions
pi ∈ pos(s), where i = 1, 2. Without loss of generality, we can assume that the two rules
are variable disjoint, hence s/pi = liθ and ti = s[riθ]pi

.

We distinguish between two cases: Either p1 and p2 are in disjoint subtrees (p1 || p2), or
one is a prefix of the other (w.o.l.o.g., p1 ≤ p2).

90

Case 1: p1 || p2.

Then s = s[l1θ]p1[l2θ]p2, and therefore t1 = s[r1θ]p1[l2θ]p2 and t2 = s[l1θ]p1 [r2θ]p2 .

Let t0 = s[r1θ]p1 [r2θ]p2 . Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using
l1 → r1.

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1q1q2, where l1/q1 is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first
rule. Suppose that x occurs m times in l1 and n times in r1 (where m ≥ 1 and n ≥ 0).

Then t1 →
∗
R t0 by applying l2 → r2 at all positions p1q

′q2, where q′ is a position of x in
r1.

Conversely, t2 →
∗
R t0 by applying l2 → r2 at all positions p1qq2, where q is a position of

x in l1 different from q1, and by applying l1 → r1 at p1 with the substitution θ′, where
θ′ = θ[x 7→ (xθ)[r2θ]q2].

Case 2.2: p2 = p1p, where p is a non-variable position of l1.

Then s/p2 = l2θ and s/p2 = (s/p1)/p = (l1θ)/p = (l1/p)θ, so θ is a unifier of l2 and
l1/p.

Let σ be the mgu of l2 and l1/p, then θ = τ ◦ σ and 〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →
∗
R v ←∗

R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1 = s[r1στ]p1 →
∗
R s[vτ]p1 and t2 = s[r2θ]p2 = s[(l1θ)[r2θ]p]p1 =

s[(l1στ)[r2στ]p]p1 = s[((l1σ)[r2σ]p)τ]p1 →
∗
R s[vτ]p1 .

This completes the proof of the Critical Pair Theorem. 2

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered
– except if the overlap is at the root (i. e., p = ε).

Corollary 4.19 A terminating TRS R is confluent if and only if all its critical pairs are
joinable.

Proof. By Newman’s Lemma and the Critical Pair Theorem. 2

Corollary 4.20 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is
at most one critical pair 〈u1, u2〉.

Reduce every ui to some normal form u′
i. If u′

1 = u′
2 for every critical pair, then R is

confluent, otherwise there is some non-confluent situation u′
1 ←

∗
R u1 ←R s→R u2 →

∗
R u′

2.
2

91

4.5 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition 4.21 Both termination problems for TRSs are undecidable in general.

Proof. Encode Turing machines using rewrite rules and reduce the (uniform) halting
problems for TMs to the termination problems for TRSs. 2

Consequence:

Decidable criteria for termination are not complete.

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at finitely many rules l →
r ∈ R, rather than at infinitely many possible replacement steps s→R s′.

A binary relation ⊐ over TΣ(X) is called compatible with Σ-operations, if s ⊐ s′ implies
f(t1, . . . , s, . . . , tn) ⊐ f(t1, . . . , s

′, . . . , tn) for all f ∈ Ω and s, s′, ti ∈ TΣ(X).

Lemma 4.22 The relation ⊐ is compatible with Σ-operations, if and only if s ⊐ s′

implies t[s]p ⊐ t[s′]p for all s, s′, t ∈ TΣ(X) and p ∈ pos(t).

Note: compatible with Σ-operations = compatible with contexts.

A binary relation ⊐ over TΣ(X) is called stable under substitutions, if s ⊐ s′ implies
sσ ⊐ s′σ for all s, s′ ∈ TΣ(X) and substitutions σ.

A binary relation ⊐ is called a rewrite relation, if it is compatible with Σ-operations and
stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X) that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

Theorem 4.23 A TRS R terminates if and only if there exists a reduction ordering ≻
such that l ≻ r for every rule l → r ∈ R.

92

Proof. “if”: s →R s′ if and only if s = t[lσ]p, s′ = t[rσ]p. If l ≻ r, then lσ ≻ rσ and
therefore t[lσ]p ≻ t[rσ]p. This implies →R ⊆ ≻. Since ≻ is a well-founded ordering, →R

is terminating.

“only if”: Define ≻ =→+
R. If →R is terminating, then ≻ is a reduction ordering. 2

Simplification Orderings

The proper subterm ordering ⊲ is defined by s ⊲ t if and only if s/p = t for some
position p 6= ε of s.

A rewrite ordering ≻ over TΣ(X) is called simplification ordering, if it has the subterm
property: s ⊲ t implies s ≻ t for all s, t ∈ TΣ(X).

Example:

Let Remb be the rewrite system Remb = { f(x1, . . . , xn) → xi | f ∈ Ω, 1 ≤ i ≤ n =
arity(f) }.

Define ⊲emb =→+
Remb

and Demb =→∗
Remb

(“homeomorphic embedding relation”).

⊲emb is a simplification ordering.

Lemma 4.24 If ≻ is a simplification ordering, then s ⊲emb t implies s ≻ t and s Demb t
implies s � t.

Proof. Since ≻ is transitive and � is transitive and reflexive, it suffices to show that
s →Remb

t implies s ≻ t. By definition, s →Remb
t if and only if s = s[lσ] and t = s[rσ]

for some rule l → r ∈ Remb. Obviously, l ⊲ r for all rules in Remb, hence l ≻ r. Since ≻
is a rewrite relation, s = s[lσ] ≻ s[rσ] = t. 2

Goal:

Show that every simplification ordering is well-founded (and therefore a reduction
ordering).

Note: This works only for finite signatures!

To fix this for infinite signatures, the definition of simplification orderings and the
definition of embedding have to be modified.

Theorem 4.25 (“Kruskal’s Theorem”) Let Σ be a finite signature, let X be a finite
set of variables. Then for every infinite sequence t1, t2, t3, . . . there are indices j > i such
that tj Demb ti. (Demb is called a well-partial-ordering (wpo).)

Proof. See Baader and Nipkow, page 113–115. 2

93

Theorem 4.26 (Dershowitz) If Σ is a finite signature, then every simplification or-
dering ≻ on TΣ(X) is well-founded (and therefore a reduction ordering).

Proof. Suppose that t1 ≻ t2 ≻ t3 ≻ . . . is an infinite descending chain.

First assume that there is an x ∈ var(ti+1) \ var(ti). Let σ = [ti/x], then ti+1σ D xσ = ti
and therefore ti = tiσ ≻ ti+1σ � ti, contradicting reflexivity.

Consequently, var(ti) ⊇ var(ti+1) and ti ∈ TΣ(V) for all i, where V is the finite set
var(t1). By Kruskal’s Theorem, there are i < j with ti Eemb tj . Hence ti � tj , contra-
dicting ti ≻ tj . 2

There are reduction orderings that are not simplification orderings and terminating TRSs
that are not contained in any simplification ordering.

Example:

Let R = {f(f(x))→ f(g(f(x)))}.

R terminates and →+
R is therefore a reduction ordering.

Assume that →R were contained in a simplification ordering ≻. Then f(f(x)) →R

f(g(f(x))) implies f(f(x)) ≻ f(g(f(x))), and f(g(f(x))) Demb f(f(x)) implies f(g(f(x))) �
f(f(x)), hence f(f(x)) ≻ f(f(x)).

Recursive Path Orderings

Let Σ = (Ω, Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω.

The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t
iff

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

Lemma 4.27 s ≻lpo t implies var(s) ⊇ var(t).

Proof. By induction on |s|+ |t| and case analysis. 2

Theorem 4.28 ≻lpo is a simplification ordering on TΣ(X).

94

Proof. Show transitivity, subterm property, stability under substitutions, compatibility
with Σ-operations, and irreflexivity, usually by induction on the sum of the term sizes
and case analysis. Details: Baader and Nipkow, page 119/120. 2

Theorem 4.29 If the precedence ≻ is total, then the lexicographic path ordering ≻lpo

is total on ground terms, i. e., for all s, t ∈ TΣ(∅): s ≻lpo t ∨ t ≻lpo s ∨ s = t.

Proof. By induction on |s|+ |t| and case analysis. 2

Recapitulation:

Let Σ = (Ω, Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”) on
Ω. The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t
iff

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

There are several possibilities to compare subterms in (2)(c):

compare list of subterms lexicographically left-to-right (“lexicographic path ordering
(lpo)”, Kamin and Lévy)

compare list of subterms lexicographically right-to-left (or according to some permu-
tation π)

compare multiset of subterms using the multiset extension (“multiset path ordering
(mpo)”, Dershowitz)

to each function symbol f with arity(n) ≥ 1 associate a status ∈ {mul} ∪ { lexπ |
π : {1, . . . , n} → {1, . . . , n} } and compare according to that status (“recursive path
ordering (rpo) with status”)

The Knuth-Bendix Ordering

Let Σ = (Ω, Π) be a finite signature, let ≻ be a strict partial ordering (“precedence”)
on Ω, let w : Ω ∪ X → R+

0 be a weight function, such that the following admissibility
conditions are satisfied:

w(x) = w0 ∈ R+ for all variables x ∈ X; w(c) ≥ w0 for all constants c ∈ Ω.

If w(f) = 0 for some f ∈ Ω with arity(f) = 1, then f � g for all g ∈ Ω.

95

The weight function w can be extended to terms as follows:

w(t) =
∑

x∈var(t)

w(x) ·#(x, t) +
∑

f∈Ω

w(f) ·#(f, t).

The Knuth-Bendix ordering ≻kbo on TΣ(X) induced by ≻ and w is defined by: s ≻kbo t
iff

(1) #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

(2) #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) t = x, s = fn(x) for some n ≥ 1, or

(b) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g, or

(c) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm) (≻kbo)lex (t1, . . . , tm).

Theorem 4.30 The Knuth-Bendix ordering induced by ≻ and w is a simplification
ordering on TΣ(X).

Proof. Baader and Nipkow, pages 125–129. 2

96

The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Define the ordering≻A over TΣ(X) by s ≻A t iffA(β)(s) ≻ A(β)(t) for all assignments
β : X → UA.

Is ≻A a reduction ordering?

Lemma 4.31 ≻A is stable under substitutions.

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all assignments β : X → UA. Let
σ be a substitution. We have to show that A(γ)(sσ) ≻ A(γ)(s′σ) for all assignments
γ : X → UA. Choose β = γ ◦ σ, then by the substitution lemma, A(γ)(sσ) = A(β)(s) ≻
A(β)(s′) = A(γ)(s′σ). Therefore sσ ≻A s′σ. 2

A function f : Un
A → UA is called monotone (with respect to ≻), if a ≻ a′ implies

f(b1, . . . , a, . . . , bn) ≻ f(b1, . . . , a
′, . . . , bn) for all a, a′, bi ∈ UA.

Lemma 4.32 If the interpretation fA of every function symbol f is monotone w. r. t. ≻,
then ≻A is compatible with Σ-operations.

Proof. Let s ≻ s′, that is, A(β)(s) ≻ A(β)(s′) for all β : X → UA. Let β : X → UA be
an arbitrary assignment. Then

A(β)(f(t1, . . . , s, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))

≻ fA(A(β)(t1), . . . ,A(β)(s′), . . . ,A(β)(tn))

= A(β)(f(t1, . . . , s
′, . . . , tn))

Therefore f(t1, . . . , s, . . . , tn) ≻A f(t1, . . . , s
′, . . . , tn). 2

Theorem 4.33 If the interpretation fA of every function symbol f is monotone w. r. t.≻,
then ≻A is a reduction ordering.

Proof. By the previous two lemmas, ≻A is a rewrite relation. If there were an infinite
chain s1 ≻A s2 ≻A . . . , then it would correspond to an infinite chain A(β)(s1) ≻
A(β)(s2) ≻ . . . (with β chosen arbitrarily). Thus ≻A is well-founded. Irreflexivity and
transitivity are proved similarly. 2

97

Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is some subset of the natural numbers.

To every function symbol f with arity n we associate a polynomial Pf(X1, . . . , Xn) ∈
N[X1, . . . , Xn] with coefficients in N and indeterminates X1, . . . , Xn. Then we define
fA(a1, . . . , an) = Pf(a1, . . . , an) for ai ∈ UA.

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise, A would not be a Σ-
algebra.)

Requirement 2:

fA must be monotone (w. r. t. ≻).

From now on:

UA = {n ∈ N | n ≥ 2 }.

If arity(f) = 0, then Pf is a constant ≥ 2.

If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . , Xn), such that every Xi occurs
in some monomial with exponent at least 1 and non-zero coefficient.

⇒ Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to terms: A
term t containing the variables x1, . . . , xn yields a polynomial Pt with indeterminates
X1, . . . , Xn (where Xi corresponds to β(xi)).

Example:

Ω = {b, f, g} with arity(b) = 0, arity(f) = 1, arity(g) = 3,
UA = {n ∈ N | n ≥ 2 },
Pb = 3, Pf (X1) = X2

1 , Pg(X1, X2, X3) = X1 + X2X3.

Let t = g(f(b), f(x), y), then Pt(X, Y) = 9 + X2Y .

If P, Q are polynomials in N[X1, . . . , Xn], we write P > Q if P (a1, . . . , an) > Q(a1, . . . , an)
for all a1, . . . , an ∈ UA.

Clearly, l ≻A r iff Pl > Pr.

Question: Can we check Pl > Pr automatically?

98

Hilbert’s 10th Problem:

Given a polynomial P ∈ Z[X1, . . . , Xn] with integer coefficients, is P = 0 for some
n-tuple of natural numbers?

Theorem 4.34 Hilbert’s 10th Problem is undecidable.

Proposition 4.35 Given a polynomial interpretation and two terms l, r, it is undecid-
able whether Pl > Pr.

Proof. By reduction of Hilbert’s 10th Problem. 2

One possible solution:

Test whether Pl(a1, . . . , an) > Pr(a1, . . . , an) for all a1, . . . , an ∈ { x ∈ R | x ≥ 2 }.

This is decidable (but very slow). Since UA ⊆ { x ∈ R | x ≥ 2 }, it implies Pl > Pr.

Another solution (Ben Cherifa and Lescanne):

Consider the difference Pl(X1, . . . , Xn) − Pr(X1, . . . , Xn) as a polynomial with real
coefficients and apply the following inference system to it to show that it is positive
for all a1, . . . , an ∈ UA:

P ⇒BCL ⊤,

if P contains at least one monomial with a positive coefficient and no monomial with
a negative coefficient.

P + cXp1
1 · · ·X

pn
n − dXq1

1 · · ·X
qn
n ⇒BCL P + c′Xp1

1 . . .Xpn
n ,

if c, d > 0, pi ≥ qi for all i, and c′ = c− d · 2(q1−p1)+···+(qn−pn) ≥ 0.

P + cXp1

1 · · ·X
pn
n − dXq1

1 · · ·X
qn
n ⇒BCL P − d′Xq1

1 . . . Xqn
n ,

if c, d > 0, pi ≥ qi for all i, and d′ = d− c · 2(p1−q1)+···+(pn−qn) > 0.

Lemma 4.36 If P ⇒BCL P ′, then P (a1, . . . , an) ≥ P ′(a1, . . . , an) for all a1, . . . , an ∈
UA.

Proof. Follows from the fact that ai ∈ UA implies ai ≥ 2. 2

Proposition 4.37 If P ⇒+
BCL ⊤, then P (a1, . . . , an) > 0 for all a1, . . . , an ∈ UA.

99

4.6 Knuth-Bendix Completion

Completion:

Goal: Given a set E of equations, transform E into an equivalent convergent set R of
rewrite rules.
(If R is finite: decision procedure for E.)

How to ensure termination?

Fix a reduction ordering ≻ and construct R in such a way that →R ⊆ ≻ (i. e., l ≻ r
for every l → r ∈ R).

How to ensure confluence?

Check that all critical pairs are joinable.

Knuth-Bendix Completion: Inference Rules

The completion procedure is presented as a set of inference rules working on a set of
equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . .

At the beginning, E = E0 is the input set and R = R0 is empty. At the end, E should
be empty; then R is the result.

For each step E, R ⊢ E ′, R′, the equational theories of E ∪R and E ′ ∪R′ agree: ≈E∪R =
≈E′∪R′ .

Notations:

The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

CP(R) denotes the set of all critical pairs between rules in R.

Orient:

E ∪ {s
.
≈ t}, R

E, R ∪ {s→ t}
if s ≻ t

Note: There are equations s ≈ t that cannot be oriented, i. e., neither s ≻ t nor t ≻ s.

Trivial equations cannot be oriented – but we don’t need them anyway:

Delete:

E ∪ {s ≈ s}, R

E, R

100

Critical pairs between rules in R are turned into additional equations:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Note: If 〈s, t〉 ∈ CP(R) then s←R u→R t and hence R |= s ≈ t.

The following inference rules are not absolutely necessary, but very useful (e. g., to get
rid of joinable critical pairs and to deal with equations that cannot be oriented):

Simplify-Eq:

E ∪ {s
.
≈ t}, R

E ∪ {u ≈ t}, R
if s→R u.

Simplification of the right-hand side of a rule is unproblematic.

R-Simplify-Rule:

E, R ∪ {s→ t}

E, R ∪ {s→ u}
if t→R u.

Simplification of the left-hand side may influence orientability and orientation. There-
fore, it yields an equation:

L-Simplify-Rule:

E, R ∪ {s→ t}

E ∪ {u ≈ t}, R

if s→R u using a rule l → r ∈ R
such that s ⊐ l (see next slide).

For technical reasons, the lhs of s → t may only be simplified using a rule l → r, if
l → r cannot be simplified using s → t, that is, if s ⊐ l, where the encompassment
quasi-ordering ⊐

∼ is defined by

s ⊐
∼ l if s/p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐

∼.

Lemma 4.38 ⊐ is a well-founded strict partial ordering.

Lemma 4.39 If E, R ⊢ E ′, R′, then ≈E∪R = ≈E′∪R′ .

Lemma 4.40 If E, R ⊢ E ′, R′ and →R ⊆ ≻, then →R′ ⊆ ≻.

101

Knuth-Bendix Completion: Correctness Proof

If we run the completion procedure on a set E of equations, different things can hap-
pen:

(1) We reach a state where no more inference rules are applicable and E is not empty.
⇒ Failure (try again with another ordering?)

(2) We reach a state where E is empty and all critical pairs between the rules in the
current R have been checked.

(3) The procedure runs forever.

In order to treat these cases simultaneously, we need some definitions.

A (finite or infinite sequence) E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . with R0 = ∅ is called a run
of the completion procedure with input E0 and ≻.

For a run, E∞ =
⋃

i≥0 Ei and R∞ =
⋃

i≥0 Ri.

The sets of persistent equations or rules of the run are E∗ =
⋃

i≥0

⋂
j≥i Ej and R∗ =⋃

i≥0

⋂
j≥i Rj .

Note: If the run is finite and ends with En, Rn, then E∗ = En and R∗ = Rn.

A run is called fair, if CP (R∗) ⊆ E∞ (i. e., if every critical pair between persisting rules
is computed at some step of the derivation).

Goal:

Show: If a run is fair and E∗ is empty, then R∗ is convergent and equivalent to E0.

In particular: If a run is fair and E∗ is empty, then ≈E0 = ≈E∞∪R∞
=↔∗

E∞∪R∞
= ↓R∗

.

General assumptions from now on:

E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . is a fair run.

R0 and E∗ are empty.

102

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn) such that s = s0, t = sn,
and for all i ∈ {1, . . . , n}:

(1) si−1 ↔E∞
si, or

(2) si−1 →R∞
si, or

(3) si−1 ←R∞
si.

The pairs (si−1, si) are called proof steps.

A proof is called a rewrite proof in R∗, if there is a k ∈ {0, . . . , n} such that si−1 →R∗
si

for 1 ≤ i ≤ k and si−1 ←R∗
si for k + 1 ≤ i ≤ n

Idea (Bachmair, Dershowitz, Hsiang):

Define a well-founded ordering on proofs, such that for every proof that is not a rewrite
proof in R∗ there is an equivalent smaller proof.

Consequence: For every proof there is an equivalent rewrite proof in R∗.

We associate a cost c(si−1, si) with every proof step as follows:

(1) If si−1 ↔E∞
si, then c(si−1, si) = ({si−1, si},−,−), where the first component is a

multiset of terms and − denotes an arbitrary (irrelevant) term.

(2) If si−1 →R∞
si using l → r, then c(si−1, si) = ({si−1}, l, si).

(3) If si−1 ←R∞
si using l → r, then c(si−1, si) = ({si}, l, si−1).

Proof steps are compared using the lexicographic combination of the multiset extension
of the reduction ordering ≻, the encompassment ordering ⊐, and the reduction ordering
≻.

The cost c(P) of a proof P is the multiset of the costs of its proof steps.

The proof ordering ≻C compares the costs of proofs using the multiset extension of the
proof step ordering.

Lemma 4.41 ≻C is a well-founded ordering.

103

Lemma 4.42 Let P be a proof in E∞ ∪ R∞. If P is not a rewrite proof in R∗, then
there exists an equivalent proof P ′ in E∞ ∪ R∞ such that P ≻C P ′.

Proof. If P is not a rewrite proof in R∗, then it contains

(a) a proof step that is in E∞, or
(b) a proof step that is in R∞ \R∗, or
(c) a subproof si−1 ←R∗

si →R∗
si+1 (peak).

We show that in all three cases the proof step or subproof can be replaced by a smaller
subproof:

Case (a): A proof step using an equation s
.
≈ t is in E∞. This equation must be deleted

during the run.

If s
.
≈ t is deleted using Orient:
. . . si−1 ↔E∞

si . . . =⇒ . . . si−1 →R∞
si . . .

If s
.
≈ t is deleted using Delete:

. . . si−1 ↔E∞
si−1 . . . =⇒ . . . si−1 . . .

If s
.
≈ t is deleted using Simplify-Eq:
. . . si−1 ↔E∞

si . . . =⇒ . . . si−1 →R∞
s′ ↔E∞

si . . .

Case (b): A proof step using a rule s → t is in R∞ \ R∗. This rule must be deleted
during the run.

If s→ t is deleted using R-Simplify-Rule:
. . . si−1 →R∞

si . . . =⇒ . . . si−1 →R∞
s′ ←R∞

si . . .

If s→ t is deleted using L-Simplify-Rule:
. . . si−1 →R∞

si . . . =⇒ . . . si−1 →R∞
s′ ↔E∞

si . . .

Case (c): A subproof has the form si−1 ←R∗
si →R∗

si+1.

If there is no overlap or a non-critical overlap:
. . . si−1 ←R∗

si →R∗
si+1 . . . =⇒ . . . si−1 →

∗
R∗

s′ ←∗
R∗

si+1 . . .

If there is a critical pair that has been added using Deduce:
. . . si−1 ←R∗

si →R∗
si+1 . . . =⇒ . . . si−1 ↔E∞

si+1 . . .

In all cases, checking that the replacement subproof is smaller than the replaced subproof
is routine. 2

104

Theorem 4.43 Let E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . . be a fair run and let R0 and E∗ be
empty. Then

(1) every proof in E∞ ∪ R∞ is equivalent to a rewrite proof in R∗,

(2) R∗ is equivalent to E0, and

(3) R∗ is convergent.

Proof. (1) By well-founded induction on ≻C using the previous lemma.

(2) Clearly ≈E∞∪R∞
= ≈E0 . Since R∗ ⊆ R∞, we get ≈R∗

⊆ ≈E∞∪R∞
. On the other

hand, by (1), ≈E∞∪R∞
⊆ ≈R∗

.

(3) Since →R∗
⊆ ≻, R∗ is terminating. By (1), R∗ is confluent. 2

Knuth-Bendix Completion: Outlook

Classical completion:

Tries to transform a set E of equations into an equivalent convergent term rewrite
system.

Fails, if an equation can neither be oriented nor deleted.

Unfailing completion:

Use an ordering ≻ that is total on ground terms.

If an equation cannot be oriented, use it in both directions for rewriting (except if
that would yield a larger term). In other words, consider the relation ↔E ∩ 6�.

Special case of superposition (see next chapter).

105

4.7 Superposition

Goal:

Combine the ideas of ordered resolution (overlap maximal literals in a clause) and
Knuth-Bendix completion (overlap maximal sides of equations) to get a calculus for
equational clauses.

Recapitulation: Equational Clauses

Atom: either P (s1, . . . , sm) with P ∈ Π or s ≈ t.

Literal: Atom or negated atom.

Clause: (possibly empty) disjunction of literals (all variables implicitly universally quan-
tified).

For refutational theorem proving, it is sufficient to consider sets of clauses: every first-
order formula F can be translated into a set of clauses N such that F is unsatisfiable if
and only if N is unsatisfiable.

In the non-equational case, unsatisfiability can for instance be checked using the (or-
dered) resolution calculus.

Recapitulation: Ordered Resolution

(Ordered) resolution: inference rules:

Ground case: Non-ground case:

Resolution:
D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

D′ ∨A C ′ ∨ ¬A′

(D′ ∨ C ′)σ

where σ = mgu(A, A′).

Factoring:
C ′ ∨ A ∨ A

C ′ ∨ A

C ′ ∨A ∨A′

(C ′ ∨A)σ

where σ = mgu(A, A′).

Ordering restrictions:

Let ≻ be a well-founded and total ordering on ground atoms.

Literal ordering ≻L: compares literals by comparing lexicographically first the respec-
tive atoms using ≻ and then their polarities (negative > positive).

106

Clause ordering ≻C : compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Ordering restrictions (ground case):

Inference are necessary only if the following conditions are satisfied:

– The left premise of a Resolution inference is not larger than or equal to the right
premise.

– The literals that are involved in the inferences ([¬] A) are maximal in the respec-
tive clauses (strictly maximal for the left premise of Resolution).

Ordering restrictions (non-ground case):

Lift the ground ordering to non-ground literals: A literal L is called [strictly] maximal
in a clause C if and only if there exists a ground substitution σ such that for all other
literals L′ in C: Lσ 6≺ L′σ [Lσ 6� L′σ].

Recapitulation: Refutational Completeness

Resolution is (even with ordering restrictions) refutationally complete:

Dynamic view of refutational completeness:

If N is unsatisfiable (N |= ⊥) then fair derivations from N produce ⊥.

Static view of refutational completeness:

If N is saturated, then N is unsatisfiable if and only if ⊥ ∈ N .

Proving refutational completeness for the ground case:

We have to show:

If N is saturated (i. e., if sufficiently many inferences have been computed), and⊥ /∈ N ,
then N is satisfiable (i. e., has a model).

Model construction:

Suppose that N be saturated and ⊥ /∈ N . We inspect all clauses in N in ascending
order and construct a sequence of Herbrand interpretations (starting with the empty
interpretation: all atoms are false).

If a clause C is false in the current interpretation, and has a positive and strictly maximal
literal A, then extend the current interpretation such that C becomes true: add A to
the current interpretation. (Then C is called productive.)

Otherwise, leave the current interpretation unchanged.

107

The sequence of interpretations has the following properties:

(1) If an atom is true in some interpretation, then it remains true in all future inter-
pretations.

(2) If a clause is true at the time where it is inspected, then it remains true in all
future interpretations.

(3) If a clause C = C ′ ∨A is productive, then C remains true and C ′ remains false in
all future interpretations.

Show by induction: if N is saturated and ⊥ /∈ N , then every clause in N is either true
at the time where it is inspected or productive.

Note:
For the induction proof, it is not necessary that the conclusion of an inference is contained
in N . It is sufficient that it is redundant w. r. t. N .

N is called saturated up to redundancy if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

Proving refutational completeness for the non-ground case:

If Ciθ is a ground instance of the clause Ci for i ∈ {0, . . . , n} and

Cn, . . . , C1

C0

and

Cnθ, . . . , C1θ

C0θ

are inferences, then the latter inference is called a ground instance of the former.

For a set N of clauses, let GΣ(N) be the set of all ground instances of clauses in N .

Construct the interpretation from the set GΣ(N) of all ground instances of clauses in
N :

N is saturated and does not contain ⊥
⇒ GΣ(N) is saturated and does not contain ⊥
⇒ GΣ(N) has a Herbrand model I
⇒ I is a model of N .

108

Observation

It is possible to encode an arbitrary predicate p using a function fp and a new constant
tt:

P (t1, . . . , tn) ; fP (t1, . . . , tn) ≈ tt
¬ P (t1, . . . , tn) ; ¬ fP (t1, . . . , tn) ≈ tt

In equational logic it is therefore sufficient to consider the case that Π = ∅, i. e., equality
is the only predicate symbol.

Abbreviation: s 6≈ t instead of ¬ s ≈ t.

The Superposition Calculus – Informally

Conventions:

From now on: Π = ∅ (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality symbol.

We will first explain the ideas and motivations behind the superposition calculus and
its completeness proof. Precise definitions will be given later.

Ground inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] 6≈ s′

D′ ∨ C ′ ∨ s[t′] 6≈ s′

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

(Note: We will need one further inference rule.)

Ordering restrictions:

Some considerations:

The literal ordering must depend primarily on the larger term of an equation.

As in the resolution case, negative literals must be a bit larger than the corresponding
positive literals.

109

Additionally, we need the following property: If s ≻ t ≻ u, then s 6≈ u must be larger
than s ≈ t. In other words, we must compare first the larger term, then the polarity,
and finally the smaller term.

The following construction has the required properties:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Ordering restrictions:

Ground inferences are necessary only if the following conditions are satisfied:

– In superposition inferences, the left premise is smaller than the right premise.

– The literals that are involved in the inferences are maximal in the respective
clauses (strictly maximal for positive literals in superposition inferences).

– In these literals, the lhs is greater than or equal to the rhs (in superposition
inferences: greater than the rhs).

Model construction:

We want to use roughly the same ideas as in the completeness proof for resolution.

But: a Herbrand interpretation does not work for equality: The equality symbol ≈ must
be interpreted by equality in the interpretation.

Solution: Define a set E of ground equations and take TΣ(∅)/E = TΣ(∅)/≈E as the
universe.

Then two ground terms s and t are equal in the interpretation, if and only if s ≈E t.

If E is a terminating and confluent rewrite system R, then two ground terms s and t
are equal in the interpretation, if and only if s ↓R t.

One problem:

In the completeness proof for the resolution calculus, the following property holds:

If C = C ′ ∨ A with a strictly maximal and positive literal A is false in the current
interpretation, then adding A to the current interpretation cannot make any literal of
C ′ true.

110

This does not hold for superposition:

Let b ≻ c ≻ d. Assume that the current rewrite system (representing the current
interpretation) contains the rule c→ d. Now consider the clause b ≈ c ∨ b ≈ d.

We need a further inference rule to deal with clauses of this kind, either the “Merging
Paramodulation” rule of Bachmair and Ganzinger or the following “Equality Factoring”
rule due to Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

Note: This inference rule subsumes the usual factoring rule.

How do the non-ground versions of the inference rules for superposition look like?

Main idea as in the resolution calculus:

Replace identity by unifiability. Apply the mgu to the resulting clause. In the ordering
restrictions, replace ≻ by 6�.

However:

As in Knuth-Bendix completion, we do not want to consider overlaps at or below a
variable position.

Consequence: there are inferences between ground instances Dθ and Cθ of clauses D
and C which are not ground instances of inferences between D and C.

Such inferences have to be treated in a special way in the completeness proof.

111

The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the superposition calculus and its
completeness proof.

We will now start again from the beginning giving precise definitions and proofs.

Inference rules are applied with respect to the commutativity of equality ≈.

Inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

Theorem 4.44 All inference rules of the superposition calculus are correct, i. e., for
every rule

Cn, . . . , C1

C0

we have {C1, . . . , Cn} |= C0.

Proof. Exercise. 2

112

Orderings:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Inferences have to be computed only if the following ordering restrictions are satisfied:

– In superposition inferences, after applying the unifier to both premises, the left
premise is not greater than or equal to the right one.

– The last literal in each premise is maximal in the respective premise, i. e., there
exists no greater literal (strictly maximal for positive literals in superposition in-
ferences, i. e., there exists no greater or equal literal).

– In these literals, the lhs is not smaller than the rhs (in superposition inferences:
neither smaller nor equal).

A ground clause C is called redundant w. r. t. a set of ground clauses N , if it follows
from clauses in N that are smaller than C.

A clause is redundant w. r. t. a set of clauses N , if all its ground instances are redundant
w. r. t. GΣ(N).

The set of all clauses that are redundant w. r. t. N is denoted by Red(N).

N is called saturated up to redundancy, if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E-interpretation (or E-algebra) with
universe { [t] | t ∈ TΣ(∅) }.

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation
s ≈ t we have TΣ(∅)/E |= s ≈ t if and only if s↔∗

E t.

In particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground equation,
then TΣ(∅)/R |= s ≈ t if and only if s ↓R t. By abuse of terminology, we say that an
equation or clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.

113

Construction of candidate interpretations (Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing ⊥. Using induction on the clause ordering we
define sets of rewrite rules EC and RC for all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N) with D ≺C C. Then
RC =

⋃
D≺CC ED.

The set EC contains the rewrite rule s→ t, if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C.

(c) s ≻ t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s→ t}.

(f) s is irreducible w. r. t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N) ED.

Lemma 4.45 If EC = {s→ t} and ED = {u→ v}, then s ≻ u if and only if C ≻C D.

Corollary 4.46 The rewrite systems RC and R∞ are convergent.

Proof. Obviously, s ≻ t for all rules s→ t in RC and R∞.

Furthermore, it is easy to check that there are no critical pairs between any two rules:
Assume that there are rules u → v in ED and s → t in EC such that u is a subterm
of s. As ≻ is a reduction ordering that is total on ground terms, we get u ≺ s and
therefore D ≺C C and ED ⊆ RC . But then s would be reducible by RC , contradicting
condition (f). 2

Lemma 4.47 If D �C C and EC = {s→ t}, then s ≻ u for every term u occurring in
a negative literal in D and s � v for every term v occurring in a positive literal in D.

Corollary 4.48 If D ∈ GΣ(N) is true in RD, then D is true in R∞ and RC for all
C ≻C D.

Proof. If a positive literal of D is true in RD, then this is obvious.

Otherwise, some negative literal s 6≈ t of D must be true in RD, hence s 6 ↓RD
t. As the

rules in R∞ \RD have left-hand sides that are larger than s and t, they cannot be used
in a rewrite proof of s ↓ t, hence s 6 ↓RC

t and s 6 ↓R∞
t. 2

114

Corollary 4.49 If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in R∞

and RC for all C ≻C D.

Proof. Obviously, D is true in R∞ and RC for all C ≻C D.

Since all negative literals of D′ are false in RD, it is clear that they are false in R∞ and
RC . For the positive literals u′ ≈ v′ of D′, condition (e) ensures that they are false in
RD ∪ {u → v}. Since u′ � u and v′ � u and all rules in R∞ \ RD have left-hand sides
that are larger than u, these rules cannot be used in a rewrite proof of u′ ↓ v′, hence
u′ 6 ↓RC

v′ and u′ 6 ↓R∞
v′. 2

Lemma 4.50 (“Lifting Lemma”) Let C be a clause and let θ be a substitution such
that Cθ is ground. Then every equality resolution or equality factoring inference from
Cθ is a ground instance of an inference from C.

Proof. Exercise. 2

Lemma 4.51 (“Lifting Lemma”) Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be
two clauses (without common variables) and let θ be a substitution such that Dθ and
Cθ are ground.

If there is a superposition inference between Dθ and Cθ where uθ and some subterm of
sθ are overlapped, and uθ does not occur in sθ at or below a variable position of s, then
the inference is a ground instance of a superposition inference from D and C.

Proof. Exercise. 2

Theorem 4.52 (“Model Construction”) Let N be a set of clauses that is saturated
up to redundancy and does not contain the empty clause. Then we have for every ground
clause Cθ ∈ GΣ(N):

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) If Cθ is redundant w. r. t. GΣ(N), then it is true in RCθ.

(iii) Cθ is true in R∞ and in RD for every D ∈ GΣ(N) with D ≻C Cθ.

Proof. We use induction on the clause ordering ≻C and assume that (i)–(iii) are already
satisfied for all clauses in GΣ(N) that are smaller than Cθ. Note that the “if” part of
(i) is obvious from the construction and that condition (iii) follows immediately from (i)
and Corollaries 4.48 and 4.49. So it remains to show (ii) and the “only if” part of (i).

115

Case 1: Cθ is redundant w. r. t. GΣ(N).

If Cθ is redundant w. r. t. GΣ(N), then it follows from clauses in GΣ(N) that are smaller
than Cθ. By part (iii) of the induction hypothesis, these clauses are true in RCθ. Hence
Cθ is true in RCθ.

Case 2: xθ is reducible by RCθ.

Suppose there is a variable x occurring in C such that xθ is reducible by RCθ, say
xθ →RCθ

w. Let the substitution θ′ be defined by xθ′ = w and yθ′ = yθ for every
variable y 6= x. The clause Cθ′ is smaller than Cθ. By part (iii) of the induction
hypothesis, it is true in RCθ. By congruence, every literal of Cθ is true in RCθ if and
only if the corresponding literal of Cθ′ is true in RCθ; hence Cθ is true in RCθ.

Case 3: Cθ contains a maximal negative literal.

Suppose that Cθ does not fall into Case 1 or 2 and that Cθ = C ′θ ∨ sθ 6≈ s′θ, where
sθ 6≈ s′θ is maximal in Cθ. If sθ ≈ s′θ is false in RCθ, then Cθ is clearly true in RCθ

and we are done. So assume that sθ ≈ s′θ is true in RCθ, that is, sθ ↓RCθ
s′θ. Without

loss of generality, sθ � s′θ.

Case 3.1: sθ = s′θ.

If sθ = s′θ, then there is an equality resolution inference

C ′θ ∨ sθ 6≈ s′θ

C ′θ
.

As shown in the Lifting Lemma, this is an instance of an equality resolution inference

C ′ ∨ s 6≈ s′

C ′σ

where C = C ′ ∨ s 6≈ s′ is contained in N and θ = ρ ◦ σ. (Without loss of generality,
σ is idempotent, therefore C ′θ = C ′σρ = C ′σσρ = C ′σθ, so C ′θ is a ground instance of
C ′σ.) Since Cθ is not redundant w. r. t. GΣ(N), C is not redundant w. r. t. N . As N is
saturated up to redundancy, the conclusion C ′σ of the inference from C is contained in
N ∪ Red(N). Therefore, C ′θ is either contained in GΣ(N) and smaller than Cθ, or it
follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, clauses in GΣ(N) that are smaller than Cθ are true
in RCθ, thus C ′θ and Cθ are true in RCθ.

116

Case 3.2: sθ ≻ s′θ.

If sθ ↓RCθ
s′θ and sθ ≻ s′θ, then sθ must be reducible by some rule in some EDθ ⊆ RCθ.

(Without loss of generality we assume that C and D are variable disjoint; so we can use
the same substitution θ.) Let Dθ = D′θ ∨ tθ ≈ t′θ with EDθ = {tθ → t′θ}. Since Dθ
is productive, D′θ is false in RCθ. Besides, by part (ii) of the induction hypothesis, Dθ
is not redundant w. r. t. GΣ(N), so D is not redundant w. r. t. N . Note that tθ cannot
occur in sθ at or below a variable position of s, say xθ = w[tθ], since otherwise Cθ would
be subject to Case 2 above. Consequently, the left superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] 6≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ

is a ground instance of a left superposition inference from D and C. By saturation up to
redundancy, its conclusion is either contained in GΣ(N) and smaller than Cθ, or it follows
from clauses in GΣ(N) that are smaller than itself (and therefore smaller than Cθ). By
the induction hypothesis, these clauses are true in RCθ, thus D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ
is true in RCθ. Since D′θ and sθ[t′θ] 6≈ s′θ are false in RCθ, both C ′θ and Cθ must be
true.

Case 4: Cθ does not contain a maximal negative literal.

Suppose that Cθ does not fall into Cases 1 to 3. Then Cθ can be written as C ′θ ∨ sθ ≈
s′θ, where sθ ≈ s′θ is a maximal literal of Cθ. If ECθ = {sθ → s′θ} or C ′θ is true in
RCθ or sθ = s′θ, then there is nothing to show, so assume that ECθ = ∅ and that C ′θ is
false in RCθ. Without loss of generality, sθ ≻ s′θ.

Case 4.1: sθ ≈ s′θ is maximal in Cθ, but not strictly maximal.

If sθ ≈ s′θ is maximal in Cθ, but not strictly maximal, then Cθ can be written as
C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. In this case, there is a equality

factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

This inference is a ground instance of an inference from C. By induction hypothesis, its
conclusion is true in RCθ. Trivially, t′θ = s′θ implies t′θ ↓RCθ

s′θ, so t′θ 6≈ s′θ must be
false and Cθ must be true in RCθ.

Case 4.2: sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible by some rule in
EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ and EDθ = {tθ → t′θ}. Since Dθ is productive,
Dθ is not redundant and D′θ is false in RCθ. We can now proceed in essentially the

117

same way as in Case 3.2: If tθ occurred in sθ at or below a variable position of s, say
xθ = w[tθ], then Cθ would be subject to Case 2 above. Otherwise, the right superposition

inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] ≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] ≈ s′θ

is a ground instance of a right superposition inference from D and C. By saturation
up to redundancy, its conclusion is true in RCθ. Since D′θ and C ′θ are false in RCθ,
sθ[t′θ] ≈ s′θ must be true in RCθ. On the other hand, tθ ≈ t′θ is true in RCθ, so by
congruence, sθ[tθ] ≈ s′θ and Cθ are true in RCθ.

Case 4.3: sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible by RCθ. Then there
are three possibilities: Cθ can be true in RCθ, or C ′θ can be true in RCθ ∪ {sθ → s′θ},
or ECθ = {sθ → s′θ}. In the first and the third case, there is nothing to show. Let us
therefore assume that Cθ is false in RCθ and C ′θ is true in RCθ ∪ {sθ → s′θ}. Then
C ′θ = C ′′θ ∨ tθ ≈ t′θ, where the literal tθ ≈ t′θ is true in RCθ ∪ {sθ → s′θ} and
false in RCθ. In other words, tθ ↓RCθ∪{sθ→s′θ} t′θ, but not tθ ↓RCθ

t′θ. Consequently,
there is a rewrite proof of tθ →∗ u ←∗ t′θ by RCθ ∪ {sθ → s′θ} in which the rule
sθ → s′θ is used at least once. Without loss of generality we assume that tθ � t′θ. Since
sθ ≈ s′θ ≻L tθ ≈ t′θ and sθ ≻ s′θ we can conclude that sθ � tθ ≻ t′θ. But then there
is only one possibility how the rule sθ → s′θ can be used in the rewrite proof: We must
have sθ = tθ and the rewrite proof must have the form tθ → s′θ →∗ u←∗ t′θ, where the
first step uses sθ → s′θ and all other steps use rules from RCθ. Consequently, s′θ ≈ t′θ
is true in RCθ. Now observe that there is an equality factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

whose conclusion is true in RCθ by saturation. Since the literal t′θ 6≈ s′θ must be false
in RCθ, the rest of the clause must be true in RCθ, and therefore Cθ must be true in
RCθ, contradicting our assumption. This concludes the proof of the theorem. 2

A Σ-interpretation A is called term-generated, if for every b ∈ UA there is a ground term
t ∈ TΣ(∅) such that b = A(β)(t).

Lemma 4.53 Let N be a set of (universally quantified) Σ-clauses and let A be a term-
generated Σ-interpretation. Then A is a model of GΣ(N) if and only if it is a model
of N .

118

Proof. (⇒): Let A |= GΣ(N); let (∀~xC) ∈ N . Then A |= ∀~xC iff A(γ[xi 7→ ai])(C) = 1
for all γ and ai. Choose ground terms ti such that A(γ)(ti) = ai; define θ such that
xiθ = ti, then A(γ[xi 7→ ai])(C) = A(γ ◦ θ)(C) = A(γ)(Cθ) = 1 since Cθ ∈ GΣ(N).

(⇐): Let A be a model of N ; let C ∈ N and Cθ ∈ GΣ(N). Then A(γ)(Cθ) =
A(γ ◦ θ)(C) = 1 since A |= N . 2

Theorem 4.54 (Refutational Completeness: Static View) Let N be a set of
clauses that is saturated up to redundancy. Then N has a model if and only if N
does not contain the empty clause.

Proof. If ⊥ ∈ N , then obviously N does not have a model. If ⊥ /∈ N , then the interpre-
tation R∞ (that is, TΣ(∅)/R∞) is a model of all ground instances in GΣ(N) according
to part (iii) of the model construction theorem. As TΣ(∅)/R∞ is term generated, it is a
model of N . 2

So far, we have considered only inference rules that add new clauses to the current set
of clauses (corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form N0 ⊢ N1 ⊢ N2 ⊢ . . . , where each Ni+1 is
obtained from Ni by adding the consequence of some inference from clauses in Ni.

Under which circumstances are we allowed to delete (or simplify) a clause during the
derivation?

A run of the superposition calculus is a sequence N0 ⊢ N1 ⊢ N2 ⊢ . . . , such that
(i) Ni |= Ni+1, and
(ii) all clauses in Ni \Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w. r. t. the remaining ones.

For a run, N∞ =
⋃

i≥0 Ni and N∗ =
⋃

i≥0

⋂
j≥i Nj . The set N∗ of all persistent clauses is

called the limit of the run.

Lemma 4.55 If N ⊆ N ′, then Red(N) ⊆ Red(N ′).

Proof. Obvious. 2

Lemma 4.56 If N ′ ⊆ Red(N), then Red(N) ⊆ Red(N \N ′).

Proof. Follows from the compactness of first-order logic and the well-foundedness of
the multiset extension of the clause ordering. 2

119

Lemma 4.57 Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a run. Then Red(Ni) ⊆ Red(N∞) and
Red(Ni) ⊆ Red(N∗) for every i.

Proof. Exercise. 2

Corollary 4.58 Ni ⊆ N∗ ∪Red(N∗) for every i.

Proof. If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must be
redundant w. r. t. Nk+1. Consequently, C is redundant w. r. t. N∗. 2

A run is called fair, if the conclusion of every inference from clauses in N∗ \ Red(N∗) is
contained in some Ni ∪ Red(Ni).

Lemma 4.59 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N∗ is contained in some Ni ∪ Red(Ni), and therefore contained in N∗ ∪
Red(N∗). Hence N∗ is saturated up to redundancy. 2

Theorem 4.60 (Refutational Completeness: Dynamic View) Let N0 ⊢ N1 ⊢ N2 ⊢
. . . be a fair run, let N∗ be its limit. Then N0 has a model if and only if ⊥ /∈ N∗.

Proof. (⇐): By fairness, N∗ is saturated up to redundancy. If ⊥ /∈ N∗, then it has
a term-generated model. Since every clause in N0 is contained in N∗ or redundant
w. r. t. N∗, this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∗. 2

Superposition: Extensions

Extensions and improvements:

simplification techniques,

selection functions (as for ordered resolution),

redundancy for inferences,

basic strategies,

constraint reasoning.

120

Theory Reasoning

Superposition vs. resolution + equality axioms:

specialized inference rules, thus no inferences with theory axioms,

computation modulo symmetry,

stronger ordering restrictions,

no variable overlaps,

stronger redundancy criterion.

Similar techniques can be used for other theories:

transitive relations,

dense total orderings without endpoints,

commutativity,

associativity and commutativity,

abelian monoids,

abelian groups,

divisible torsion-free abelian groups.

Observations:

no inferences with theory axioms:
yes, usually possible.

computation modulo theory axioms:
often possible, but requires unification and orderings modulo theory.

stronger ordering restrictions, no variable overlaps:
sometimes possible, but in many cases, certain variable overlaps remain necessary.

stronger redundancy criterion:
depends on the model construction.

In many cases, integrating more theory axioms simplifies matters.

Inefficient unification procedures may be replaced by constraints.

121

5 Implementation Issues

Problem:

Refutational completeness is nice in theory, but . . .

. . . it guarantees only that proofs will be found eventually, not that they will be found
quickly.

Even though orderings and selection functions reduce the number of possible infer-
ences, the search space problem is enormous.

First-order provers “look for a needle in a haystack”: It may be necessary to make
some millions of inferences to find a proof that is only a few dozens of steps long.

Coping with Large Sets of Formulas

Consequently:

• We must deal with large sets of formulas.

• We must use efficient techniques to find formulas that can be used as partners in
an inference.

• We must simplify/eliminate as many formulas as possible.

• We must use efficient techniques to check whether a formula can be simplified/eliminated.

Note:

Often there are several competing implementation techniques.

Design decisions are not independent of each other.

Design decisions are not independent of the particular class of problems we want to
solve. (FOL without equality/FOL with equality/unit equations, size of the signature,
special algebraic properties like AC, etc.)

5.1 The Main Loop

Standard approach:

Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences together with the “given
clause” using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set of clauses.

122

Consequently: split the set of clauses into two subsets.

• W = “Worked-off” (or “active”) clauses: Have already been selected as “given
clause”. (So all inferences between these clauses have already been computed.)

• U = “Usable” (or “passive”) clauses: Have not yet been selected as “given clause”.

During each iteration of the main loop:

Select a new given clause C from U ; U := U \ {C}.

Find partner clauses Di from W ; New = Infer({Di | i ∈ I }, C); U = U ∪ New;
W = W ∪ {C}

Additionally:

Try to simplify C using W . (Skip the remainder of the iteration, if C can be elimi-
nated.)

Try to simplify (or even eliminate) clauses from W using C.

Design decision: should one also simplify U using W ?

yes ; “Otter loop”:
Advantage: simplifications of U may be useful to derive the empty clause.

no ; “Discount loop”:
Advantage: clauses in U are really passive; only clauses in W have to be kept in index
data structure. (Hence: can use index data structure for which retrieval is faster, even
if update is slower and space consumption is higher.)

5.2 Term Representations

The obvious data structure for terms: Trees

f(g(x1), f(g(x1), x2))

f

g f

x1 g x2

x1

optionally: (full) sharing

An alternative: Flatterms

123

f(g(x1), f(g(x1), x2))

f g x1 f g x1 x2

need more memory;
but: better suited for preorder term traversal

and easier memory management.

5.3 Index Data Structures

Problem:

For a term t, we want to find all terms s such that

• s is an instance of t,

• s is a generalization of t (i. e., t is an instance of s),

• s and t are unifiable,

• s is a generalization of some subterm of t,

• . . .

Requirements:

fast insertion,

fast deletion,

fast retrieval,

small memory consumption.

Note: In applications like functional or logic programming, the requirements are different
(insertion and deletion are much less important).

Many different approaches:

• Path indexing

• Discrimination trees

• Substitution trees

• Context trees

• Feature vector indexing

• . . .

124

Perfect filtering:

The indexing technique returns exactly those terms satisfying the query.

Imperfect filtering:

The indexing technique returns some superset of the set of all terms satisfying the
query.

Retrieval operations must be followed by an additional check, but the index can often
be implemented more efficiently.

Frequently: All occurrences of variables are treated as different variables.

Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f(g(∗, b), ∗): f.1.g.1.∗
f.1.g.2.b
f.2.∗

Each leaf of the trie contains the set of (pointers to) all terms that contain the respec-
tive path.

Example: Path index for {f(g(d, ∗), c)}

{1}

{1} {1}

f
1 2

g
c

1 2

d ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗)}

125

{1}
{2}

{2} {1} {2} {1}

f
1 2

g
c
∗

1 2

∗ d b ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c)}

{1, 3}
{2}

{2} {1, 3} {2, 3} {1}

f
1 2

g
c
∗

1 2

∗ d b ∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b)}

{4}
{1, 3}

{2}

{2, 4}{1, 3} {2, 3}{4} {1}

f
1 2

g b
c
∗

1 2

∗ d b
c
∗

Example: Path index for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b), f(∗, ∗)}

126

{5} {4}
{1, 3}

{2, 5}

{2, 4}{1, 3} {2, 3}{4} {1}

f
1 2

∗ g b
c
∗

1 2

∗ d b
c
∗

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances.

Disadvantages:

Retrieval requires combining intermediate results for subterms.

Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f(g(∗, b), ∗): f.g.∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is represented by the path.

Example: Discrimination tree for {f(g(d, ∗), c)}

{1}

f
g

d

∗

c

127

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗)}

{1} {2}

f
g

d ∗

∗ b

c ∗

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c)}

{3} {1} {2}

f
g

d ∗

b ∗ b

c c ∗

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b)}

{3} {1} {2} {4}

f
g

d ∗

b ∗ b c

c c ∗ b

Example: Discrimination tree for {f(g(d, ∗), c), f(g(∗, b), ∗), f(g(d, b), c), f(g(∗, c), b),
f(∗, ∗)}

128

{5}

{3} {1} {2} {4}

f
g ∗

d ∗
∗

b ∗ b c

c c ∗ b

Advantages:

Each leaf yields one term, hence retrieval does not require intersections of intermediate
results for subterms.

Good for finding generalizations.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed up the search for instances
or unifiable terms.

Backtracking required for retrieval.

Literature

Literature:

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov: Term Indexing, Ch. 26 in Robinson
and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

Christoph Weidenbach: Combining Superposition, Sorts and Splitting, Ch. 27 in Robin-
son and Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier, 2001.

6 Many-Sorted First-Order Logic

→Many-Sorted First-order logic

• generalization of first-order logic

• idea is to prohibit ill-defined statements, e.g., cons(3, nil) + 2

• identical proof theory

• sorts denote subsets of the domain

129

• variables come with a sort

• functions are declared over the sorts

Many-Sorted Signature

A signature

ΣΥ = (Ω, Π, Υ, υ)

fixes an alphabet of non-logical symbols, where

• Ω, Π are the sets of function, predicate symbols

• Υ is a set of sort symbols

• υ is a function assigning sorts to function, predicate and variable symbols

Terms, Atoms,Formulae

Well-sorted Terms of sort S ∈ Υ over ΣΥ (resp., TS
ΣΥ

(X)-terms) are formed according
to these syntactic rules:

s, t, u, v ::= x , x ∈ X, υ(x) = S (variable)
| f(t1, ..., tn) , f ∈ Ω, arity(f) = n, υ(f) = T1 . . . TnS,

ti ∈ TTi

ΣΥ
(X) (functional term)

By TS
ΣΥ

we denote the set of ΣΥ-ground terms of sort S, TΣΥ
(X) =

⋃
S∈Υ TS

ΣΥ
(X).

If P ∈ Π, ti ∈ TTi

ΣΥ
(X), υ(P) = T1 . . . Tn then P (t1, ..., tn) is an atom. For any t, s ∈

TS
ΣΥ

(X), s ≈ t is an atom.

Formulae are build as for standard (unsorted) first-order logic.

For substitions we additionally require that if xσ = t then t ∈ T
υ(x)
ΣΥ

(X) and call it well-
sorted. Note that application of the standard unification algorithms to any two terms
of the same sort yields a well-sorted unifier (if there exists a unifier at all).

Many-Sorted Structures

A ΣΥ-algebra is a quadruple

A = (UA, (fA : (T1)A × . . .× (Tn)A → SA)f∈Ω,
(pA ⊆ (S1)A × . . .× (Sm)A)p∈Π,

(TA ⊆ UA)T∈Υ)

where arity(f) = n, arity(p) = m, υ(f) = T1 . . . TnS, υ(p) = S1 . . . Sm, TA 6= ∅, UA 6= ∅ is
a set, called the universe of A.

130

The rest of the semantics is identical to the unsorted case, except that valuations respect
the sort information.

7 SUP(LA)

→Superposition Modulo Linear Arithmetic

• Consider the base specification SP = (ΣLA,ALA), where ΣLA = (Q ∪ {+,−, ∗}, {≥
,≤, >, <}) see Section 2.

• The hierarchic extension of SP is SP′ = (Σ′, N ′), where ΣLA ⊆ Σ′ and N ′ is a set
of Σ′ clauses.

• We consider a many-sorted setting, consisting of a base sort, containing all terms of
ΣLA plus potentially extension terms from Σ′ \ ΣLA, and a general sort containing
all other terms.

• A term (a clause) consisting only of ΣLA symbols and base sort variables, is called
a base term (base clause).

• For the following results, we need that ALA is term-generated, i.e., for any a ∈ ULA

(= Q) there is a ground term t ∈ TΣLA
with ALA(t) = a. This is obvious, because

Q ⊆ ΣLA.

• Furthermore, we need that SP = (ΣLA,ALA) is compact.

• A model of A′ of SP′, i.e., A′ |= N ′, is called hierarchic if A′ |ΣLA
= ALA.

• A substitution is called simple if it maps variables of the base sort to base terms.

Hierarchic Clauses

A clause C = Λ ‖ C ′ is called hierarchic if Λ only contains base terms and base literals
(ΣLA) and all base terms in C ′ are variables. The semantics of C is

∧
Λ→ C ′.

Any clause can be equivalently transformed into a hierarchic clause: whenever a sub-
term t whose top symbol is a base theory symbol occurs immediately below a non-base
operator symbol, it is replaced by a new base sort variable x (“abstracted out”) and the
equation x ≈ t is added to Λ. Analogously, if a subterm t whose top symbol is not a
base theory symbol occurs immediately below a base operator symbol, it is replaced by
a general variable y and the disequation y 6≈ t is added to C ′. This transformation is
repeated until the clause is hierarchic.

131

Superposition Modulo LA

Pos. Superposition:
Λ1 ‖ D′ ∨ t ≈ t′ Λ2 ‖ C ′ ∨ s[u] ≈ s′

(Λ1, Λ2 ‖ D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and simple and
u is not a variable.

Neg. Superposition:
Λ1 ‖ D′ ∨ t ≈ t′ Λ2 ‖ C ′ ∨ s[u] 6≈ s′

(Λ1, Λ2 ‖ D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and simple and
u is not a variable.

Equality Resolution:
Λ ‖ C ′ ∨ s 6≈ s′

(Λ ‖ C ′)σ

where σ = mgu(s, s′) and simple.

Equality Factoring:
Λ ‖ C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(Λ ‖ C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′) and simple.

Constraint Refutation:
Λ ‖ 2

2

where ¬(
∧

Λ)
is inconsistent in ALA.

Redundancy

A clause C ∈ N is called redundant if for all simple ground instances C ′ of C there are
simple ground instances C ′

1, . . . , C
′
n from N such that C ′

1, . . . , C
′
n |= C ′ and C ′

i ≺ C ′ for
all i.

A hierarchic clause Λ ‖ C is called a tautology if C is a tautology or the existential
closure of

∧
Λ is unsatisfiable in ALA.

A hierarchic clause Λ1 ‖ C1 subsumes a hierarchic clause Λ2 ‖ C2, if there is a simple
matcher σ such that C1σ ⊂ C2 and the universal closure of

∧
Λ2 →

∧
Λ1σ holds in

ALA.

Purely base sort variable equations generated during reasoning are moved from the FOL
to the LA part.

132

Sufficient Completeness

A set N of clauses is called sufficiently complete with respect to simple instances, if for
every model A′ of the set of simple ground instances from N and every ground non-base
term t of the base sort there exists a ground base term t such that t′ ≈ t is true in A′.

Completeness of SUP(LA)

The hierarchic superposition calculus modulo LA is refutationally complete for all sets
of clauses that are sufficiently complete with respect to simple instances.

Current Hot Research Topics & Applications

• decidability of SUP(LA) ⇒ automata theory, software analysis

• better/different calculi for SAT ⇒ configuration management

• parallel calculi for SAT/FOF ⇒ graphics hardware

• scalable calculi for Finite Domain FOF ⇒ knowledge management

• understanding the combination of FOF with theories ⇒ insight

The End

133

