Many-Sorted Structures

A $\Sigma_\mathcal{T}$-algebra is a quadruple

\[\mathcal{A} = (U_\mathcal{A}, \{ (f_\mathcal{A} : (T_1)_\mathcal{A} \times \ldots \times (T_n)_\mathcal{A} \to S_{\mathcal{A}})_{f \in \Omega},
\quad (p_\mathcal{A} \subseteq (S_1)_\mathcal{A} \times \ldots \times (S_m)_\mathcal{A} \}_{p \in \Pi},
\quad (T_\mathcal{A} \subseteq U_\mathcal{A})_{T \in \mathcal{T}}) \]

where $\text{arity}(f) = n$, $\text{arity}(p) = m$, $\nu(f) = T_1 \ldots T_n S$, $\nu(p) = S_1 \ldots S_m$, $T_\mathcal{A} \neq \emptyset$, $U_\mathcal{A} \neq \emptyset$ is a set, called the universe of \mathcal{A}.

The rest of the semantics is identical to the unsorted case, except that valuations respect the sort information.

7 SUP(LA)

Superposition Modulo Linear Arithmetic

- Consider the base specification $\mathcal{SP} = (\Sigma_{\mathcal{LA}}, \mathcal{A}_{\mathcal{LA}})$, where $\Sigma_{\mathcal{LA}} = (\mathbb{Q} \cup \{+, -, \ast\}, \{\geq, \leq, >, <\})$ see Section 2.
- The hierarchic extension of \mathcal{SP} is $\mathcal{SP}' = (\Sigma', N')$, where $\Sigma_{\mathcal{LA}} \subseteq \Sigma'$ and N' is a set of Σ' clauses.
- We consider a many-sorted setting, consisting of a base sort, containing all terms of $\Sigma_{\mathcal{LA}}$ plus potentially extension terms from $\Sigma' \setminus \Sigma_{\mathcal{LA}}$, and a general sort containing all other terms.
- A term (a clause) consisting only of $\Sigma_{\mathcal{LA}}$ symbols and base sort variables, is called a base term (base clause).
- For the following results, we need that $\mathcal{A}_{\mathcal{LA}}$ is term-generated, i.e., for any $a \in U_{\mathcal{LA}} (= \mathbb{Q})$ there is a ground term $t \in T_{\Sigma_{\mathcal{LA}}}$ with $\mathcal{A}_{\mathcal{LA}}(t) = a$. This is obvious, because $\mathbb{Q} \subseteq \Sigma_{\mathcal{LA}}$.
- Furthermore, we need that $\mathcal{SP} = (\Sigma_{\mathcal{LA}}, \mathcal{A}_{\mathcal{LA}})$ is compact.
- A model of \mathcal{A}' of \mathcal{SP}', i.e., $\mathcal{A}' \models N'$, is called hierarchic if $\mathcal{A}' \models_{\mathcal{LA}} = \mathcal{A}_{\mathcal{LA}}$.
- A substitution is called simple if it maps variables of the base sort to base terms.
Hierarchic Clauses

A clause \(C = \Lambda \parallel C' \) is called hierarchic if \(\Lambda \) only contains base terms and base literals \((\Sigma_{LA})\) and all base terms in \(C' \) are variables. The semantics of \(C \) is \(\land \Lambda \rightarrow C' \).

Any clause can be equivalently transformed into a hierarchic clause: whenever a sub-term \(t \) whose top symbol is a base theory symbol occurs immediately below a non-base operator symbol, it is replaced by a new base sort variable \(x \) ("abstracted out") and the equation \(x \approx t \) is added to \(\Lambda \). Analogously, if a subterm \(t \) whose top symbol is not a base theory symbol occurs immediately below a base operator symbol, it is replaced by a general variable \(y \) and the disequation \(y \not\approx t \) is added to \(C' \). This transformation is repeated until the clause is hierarchic.

Superposition Modulo LA

Pos. Superposition:

\[
\frac{\Lambda_1 \parallel D' \lor t \approx t' \quad \Lambda_2 \parallel C' \lor s[u] \approx s'}{(\Lambda_1, \Lambda_2 \parallel D' \lor C' \lor s[t'] \approx s')\sigma}
\]

where \(\sigma = \text{mgu}(t, u) \) and simple and \(u \) is not a variable.

Neg. Superposition:

\[
\frac{\Lambda_1 \parallel D' \lor t \approx t' \quad \Lambda_2 \parallel C' \lor s[u] \not\approx s'}{(\Lambda_1, \Lambda_2 \parallel D' \lor C' \lor s[t'] \not\approx s')\sigma}
\]

where \(\sigma = \text{mgu}(t, u) \) and simple and \(u \) is not a variable.

Equality Resolution:

\[
\frac{\Lambda \parallel C' \lor s \not\approx s'}{(\Lambda \parallel C')\sigma}
\]

where \(\sigma = \text{mgu}(s, s') \) and simple.

Equality Factoring:

\[
\frac{\Lambda \parallel C' \lor s' \approx t' \lor s \approx t}{(\Lambda \parallel C' \lor t \not\approx t' \lor s \approx t')\sigma}
\]

where \(\sigma = \text{mgu}(s, s') \) and simple.

Constraint Refutation:

\[
\frac{\Lambda_1 \parallel \Box \ldots \Lambda_n \parallel \Box}{\Box}
\]

where \(\neg(\land \Lambda_1) \land \ldots \land \neg(\land \Lambda_n) \) is inconsistent in \(A_{LA} \).
Redundancy

A clause $C \in N$ is called redundant if for all simple ground instances C' of C there are simple ground instances C'_1, \ldots, C'_n from N such that $C'_1, \ldots, C'_n \models C''$ and $C'_i \prec C''$ for all i.

A hierarchic clause $\Lambda \parallel C$ is called a tautology if C is a tautology or the existential closure of $\bigwedge \Lambda$ is unsatisfiable in A_{LA}.

A hierarchic clause $\Lambda_1 \parallel C_1$ subsumes a hierarchic clause $\Lambda_2 \parallel C_2$, if there is a simple matcher σ such that $C_1\sigma \subset C_2$ and the universal closure of $\bigwedge \Lambda_2 \rightarrow \bigwedge \Lambda_1\sigma$ holds in A_{LA}.

Sufficient Completeness

A set N of clauses is called sufficiently complete with respect to simple instances, if for every model A' of the set of simple ground instances from N and every ground non-base term t of the base sort there exists a ground base term t' such that $t' \approx t$ is true in A'.

Completeness of SUP(LA)

The hierarchic superposition calculus modulo LA is refutationally complete for all sets of clauses that are sufficiently complete with respect to simple instances.

The End