Case 3.2: $s\theta \not\succ s\theta'$.

If $s\theta \downarrow_{R_C} s\theta'$ and $s\theta \succ s\theta'$, then $s\theta$ must be reducible by some rule in some $E_{D\theta} \subseteq R_C$. (Without loss of generality we assume that C and D are variable disjoint; so we can use the same substitution θ.) Let $D\theta = D'\theta \lor t\theta \approx t'\theta$ with $E_{D\theta} = \{ t\theta \rightarrow t'\theta \}$. Since $D\theta$ is productive, $D'\theta$ is false in R_C. Besides, by part (ii) of the induction hypothesis, $D\theta$ is not redundant w.r.t. $G_\Sigma(N)$, so D is not redundant w.r.t. N. Note that $t\theta$ cannot occur in $s\theta$ at or below a variable position of s, say $x\theta = w[t\theta]$, since otherwise $C\theta$ would be subject to Case 2 above. Consequently, the left superposition inference

\[
\frac{D'\theta \lor t\theta \approx t'\theta \quad C'\theta \lor s\theta[t\theta] \not\approx s'\theta}{D'\theta \lor C'\theta \lor s\theta[t\theta] \not\approx s'\theta}
\]

is a ground instance of a left superposition inference from D and C. By saturation up to redundancy, its conclusion is either contained in $G_\Sigma(N)$ and smaller than $C\theta$, or it follows from clauses in $G_\Sigma(N)$ that are smaller than itself (and therefore smaller than $C\theta$). By the induction hypothesis, these clauses are true in R_C, thus $D'\theta \lor C'\theta \lor s\theta[t\theta] \not\approx s'\theta$ is true in R_C. Since $D'\theta$ and $s\theta[t\theta] \not\approx s'\theta$ are false in R_C, both $C'\theta$ and $C\theta$ must be true.

Case 4: $C\theta$ does not contain a maximal negative literal.

Suppose that $C\theta$ does not fall into Cases 1 to 3. Then $C\theta$ can be written as $C'\theta \lor s\theta \approx s'\theta$, where $s\theta \approx s'\theta$ is a maximal literal of $C\theta$. If $E_{C\theta} = \{ s\theta \rightarrow s'\theta \}$ or $C'\theta$ is true in R_C, or $s\theta = s'\theta$, then there is nothing to show, so assume that $E_{C\theta} = \emptyset$ and that $C'\theta$ is false in R_C. Without loss of generality, $s\theta \succ s'\theta$.

Case 4.1: $s\theta \approx s'\theta$ is maximal in $C\theta$, but not strictly maximal.

If $s\theta \approx s'\theta$ is maximal in $C\theta$, but not strictly maximal, then $C\theta$ can be written as $C''\theta \lor t\theta \approx t'\theta \lor s\theta \approx s'\theta$, where $t\theta = s\theta$ and $t'\theta = s'\theta$. In this case, there is an equality factoring inference

\[
\frac{C''\theta \lor t\theta \approx t'\theta \lor s\theta \approx s'\theta}{C''\theta \lor t\theta \not\approx s'\theta \lor t\theta \approx t'\theta}
\]

This inference is a ground instance of an inference from C. By induction hypothesis, its conclusion is true in R_C. Trivially, $t'\theta = s'\theta$ implies $t\theta \downarrow_{R_C} s'\theta$, so $t\theta \not\approx s'\theta$ must be false and $C\theta$ must be true in R_C.

Case 4.2: $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is reducible.

Suppose that $s\theta \approx s'\theta$ is strictly maximal in $C\theta$ and $s\theta$ is reducible by some rule in $E_{D\theta} \subseteq R_C$. Let $D\theta = D'\theta \lor t\theta \approx t'\theta$ and $E_{D\theta} = \{ t\theta \rightarrow t'\theta \}$. Since $D\theta$ is productive, $D\theta$ is not redundant and $D'\theta$ is false in R_C. We can now proceed in essentially the
Case 4.3: If \(t \theta \) occurred in \(s \theta \) at or below a variable position of \(s \), say
\(x \theta = w[\theta] \), then \(C \theta \) would be subject to Case 2 above. Otherwise, the right superposition inference

\[
\frac{D' \theta \lor t \theta \approx t' \theta}{D' \theta \lor C' \theta \lor s \theta[t' \theta] \approx s' \theta}
\]

is a ground instance of a right superposition inference from \(D \) and \(C \). By saturation up to redundancy, its conclusion is true in \(R_{C \theta} \). Since \(D' \theta \) and \(C' \theta \) are false in \(R_{C \theta} \), \(s' \theta \approx s' \theta \) must be true in \(R_{C \theta} \). On the other hand, \(t \theta \approx t' \theta \) is true in \(R_{C \theta} \), so by congruence, \(s \theta[t\theta] \approx s' \theta \) and \(C \theta \) are true in \(R_{C \theta} \).

Case 4.3: \(s \theta \approx s' \theta \) is strictly maximal in \(C \theta \) and \(s \theta \) is irreducible.

Suppose that \(s \theta \approx s' \theta \) is strictly maximal in \(C \theta \) and \(s \theta \) is irreducible by \(R_{C \theta} \). Then there are three possibilities: \(C \theta \) can be true in \(R_{C \theta} \), or \(C' \theta \) can be true in \(R_{C \theta} \cup \{ s \theta \rightarrow s' \theta \} \), or \(E_{C \theta} = \{ s \theta \rightarrow s' \theta \} \). In the first and the third case, there is nothing to show. Let us therefore assume that \(C \theta \) is false in \(R_{C \theta} \) and \(C' \theta \) is true in \(R_{C \theta} \cup \{ s \theta \rightarrow s' \theta \} \). Then \(C' \theta = C'' \theta \lor t \theta \approx t' \theta \), where the literal \(t \theta \approx t' \theta \) is true in \(R_{C \theta} \cup \{ s \theta \rightarrow s' \theta \} \) and false in \(R_{C \theta} \). In other words, \(t \theta \downarrow_{R_{C \theta} \cup \{ s \theta \rightarrow s' \theta \}} t' \theta \), but not \(t \theta \downarrow_{R_{C \theta}} t' \theta \). Consequently, there is a rewrite proof of \(t \theta \rightarrow^* u \leftarrow^* t' \theta \) by \(R_{C \theta} \cup \{ s \theta \rightarrow s' \theta \} \) in which the rule \(s \theta \rightarrow s' \theta \) is used at least once. Without loss of generality we assume that \(t \theta \succeq t' \theta \). Since \(s \theta \approx s' \theta \succeq_{l} t \theta \approx t' \theta \) and \(s \theta \succeq s' \theta \) we can conclude that \(s \theta \succeq t \theta \succeq t' \theta \). But then there is only one possibility how the rule \(s \theta \rightarrow s' \theta \) can be used in the rewrite proof: We must have \(s \theta = t \theta \) and the rewrite proof must have the form \(t \theta \rightarrow s' \theta \rightarrow^* u \leftarrow^* t' \theta \), where the first step uses \(s \theta \rightarrow s' \theta \) and all other steps use rules from \(R_{C \theta} \). Consequently, \(s' \theta \approx t' \theta \) is true in \(R_{C \theta} \). Now observe that there is an equality factoring inference

\[
\frac{C'' \theta \lor t \theta \approx t' \theta \lor s \theta \approx s' \theta}{C'' \theta \lor t' \theta \not\approx s' \theta \lor t \theta \approx t' \theta}
\]

whose conclusion is true in \(R_{C \theta} \) by saturation. Since the literal \(t' \theta \not\approx s' \theta \) must be false in \(R_{C \theta} \), the rest of the clause must be true in \(R_{C \theta} \), and therefore \(C \theta \) must be true in \(R_{C \theta} \), contradicting our assumption. This concludes the proof of the theorem. \(\square \)

A \(\Sigma \)-interpretation \(A \) is called term-generated, if for every \(b \in U_A \) there is a ground term \(t \in T_{\Sigma}(\emptyset) \) such that \(b = A(\beta)(t) \).

Lemma 4.53 Let \(N \) be a set of (universally quantified) \(\Sigma \)-clauses and let \(A \) be a term-generated \(\Sigma \)-interpretation. Then \(A \) is a model of \(G_{\Sigma}(N) \) if and only if it is a model of \(N \).
Proof. (\Rightarrow): Let $\mathcal{A} \models G_{\Sigma}(N)$; let $(\forall \overline{x}C) \in N$. Then $\mathcal{A} \models \forall \overline{x}C$ iff $\mathcal{A}(\gamma[x_i \mapsto a_i])(C) = 1$ for all γ and a_i. Choose ground terms t_i such that $\mathcal{A}(\gamma)(t_i) = a_i$. Then $\mathcal{A}(\gamma)(t_i)$ is a model of N.

(⇐): Let \mathcal{A} be a model of N. Then $\mathcal{A}(\gamma)(C \theta) = 1$ for all γ and a_i. Choose ground terms t_i such that $\mathcal{A}(\gamma)(C \theta) = 1$ since $C \theta \in G_{\Sigma}(N)$.

Theorem 4.54 (Refutational Completeness: Static View) Let N be a set of clauses that is saturated up to redundancy. Then N has a model if and only if N does not contain the empty clause.

Proof. If $\bot \in N$, then obviously N does not have a model. If $\bot \notin N$, then the interpretation R_{∞} (that is, $T_{\Sigma}(\emptyset)/R_{\infty}$) is a model of all ground instances in $G_{\Sigma}(N)$ according to part (iii) of the model construction theorem. As $T_{\Sigma}(\emptyset)/R_{\infty}$ is term generated, it is a model of N.

So far, we have considered only inference rules that add new clauses to the current set of clauses (corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form $N_0 \vdash N_1 \vdash N_2 \vdots$, where each N_{i+1} is obtained from N_i by adding the consequence of some inference from clauses in N_i.

Under which circumstances are we allowed to delete (or simplify) a clause during the derivation?

A run of the superposition calculus is a sequence $N_0 \vdash N_1 \vdash N_2 \vdots$, such that

(i) $N_i \models N_{i+1}$, and

(ii) all clauses in $N_i \setminus N_{i+1}$ are redundant w. r. t. N_{i+1}.

In other words, during a run we may add a new clause if it follows from the old ones, and we may delete a clause, if it is redundant w. r. t. the remaining ones.

For a run, $N_\infty = \bigcup_{i \geq 0} N_i$ and $N_* = \bigcap_{i \geq 0} \bigcap_{j \geq i} N_j$. The set N_* of all persistent clauses is called the limit of the run.

Lemma 4.55 If $N \subseteq N'$, then $\text{Red}(N) \subseteq \text{Red}(N')$.

Proof. Obvious. \hfill \Box

Lemma 4.56 If $N' \subseteq \text{Red}(N)$, then $\text{Red}(N) \subseteq \text{Red}(N \setminus N')$.

Proof. Follows from the compactness of first-order logic and the well-foundedness of the multiset extension of the clause ordering. \hfill \Box