
2.4 Algorithmic Problems

Validity(F ): |= F ?

Satisfiability(F ): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F ): A |= F?

Solve(A,F ): find an assignment β such that A,β |= F

Solve(F ): find a substitution σ such that |= Fσ

Abduce(F ): find G with “certain properties” such that G

entails F
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Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas.

(One can easily encode Turing machines in most signatures.)

2. For each signature Σ, the set of valid Σ-formulas is

recursively enumerable.

(We will prove this by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is

not recursively enumerable.

These complexity results motivate the study of subclasses of

formulas (fragments) of first-order logic

Q: Can you think of any fragments of first-order logic for which

validity is decidable?
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Some Decidable Fragments

Some decidable fragments:

• Monadic class: no function symbols, all predicates unary;

validity is NEXPTIME-complete.

• Variable-free formulas without equality:

satisfiability is NP-complete. (why?)

• Variable-free Horn clauses (clauses with at most one positive

atom): entailment is decidable in linear time.

• Finite model checking is decidable in time polynomial in the

size of the structure and the formula.
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2.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of

quantifiers. The subsequent normal form transformations are

intended to eliminate many of them.
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Prenex Normal Form

Prenex formulas have the form

Q1x1 . . . Qnxn F ,

where F is quantifier-free and Qi ∈ {∀,∃};

we call Q1x1 . . . Qnxn the quantifier prefix and F the matrix of

the formula.
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Prenex Normal Form

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G ) ⇒P (F → G ) ∧ (G → F )

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G ) ⇒P Qy(F [y/x ] ρ G ), y fresh, ρ ∈ {∧,∨}

(QxF → G ) ⇒P Qy(F [y/x ] → G ), y fresh

(F ρ QxG ) ⇒P Qy(F ρ G [y/x ]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.
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Skolemization

Intuition: replacement of ∃y by a concrete choice function

computing y from all the arguments y depends on.

Transformation ⇒S (to be applied outermost, not in

subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f (x1, . . . , xn)/y ]

where f /n is a new function symbol (Skolem function).
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Skolemization

Together: F
∗

⇒P G︸︷︷︸
prenex

∗
⇒S H︸︷︷︸

prenex, no ∃

Theorem 2.9

Let F , G , and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (wrt. Σ-Alg) ⇔ H satisfiable (wrt. Σ′-Alg)

where Σ′ = (Ω ∪ SKF , Π), if Σ = (Ω,Π).
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Clausal Normal Form (Conjunctive Normal Form)

(F ↔ G) ⇒K (F → G) ∧ (G → F )

(F → G) ⇒K (¬F ∨ G)

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

¬¬F ⇒K F

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ >) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ >) ⇒K >

(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity

of ∧ and ∨. The first five rules, plus the rule (¬Q), compute the

negation normal form (NNF) of a formula.
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The Complete Picture

F
∗

⇒P Q1y1 . . . Qnyn G (G quantifier-free)

∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸
clauses Ci︸ ︷︷ ︸

F ′

N = {C1, . . . ,Ck} is called the clausal (normal) form (CNF) of F .

Note: the variables in the clauses are implicitly universally

quantified.
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The Complete Picture

Theorem 2.10

Let F be closed. Then F ′ |= F .

(The converse is not true in general.)

Theorem 2.11

Let F be closed. Then F is satisfiable iff F ′ is satisfiable iff

N is satisfiable
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Optimization

Here is lots of room for optimization since we only can preserve

satisfiability anyway:

• size of the CNF exponential when done naively;

• want to preserve the original formula structure;

• want small arity of Skolem functions.
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2.6 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall

contains at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ ΩPSfrag replacements

f

fA(4, . . . ,4) =

4 . . . 4
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Herbrand Interpretations

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors. Only predicate symbols

p/m ∈ Π may be freely interpreted as relations pA ⊆ Tm
Σ .

Proposition 2.12

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with

sets of Σ-ground atoms.
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Herbrand Interpretations

Example: ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}
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Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F ,

if I |= F .

Theorem 2.13

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is

the set of ground instances of N.

[The proof will be given below in the context of the completeness

proof for resolution.]
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Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))

(s(0) < 0) ∨ (0 ≤ s(s(0)))

. . .

(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))

. . .
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2.7 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn,Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises︷ ︸︸ ︷
F1 . . . Fn

Fn+1︸︷︷︸
conclusion

.

Clausal inference system: premises and conclusions are clauses.

One also considers inference systems over other data structures

(cf. below).
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Proofs

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N, or else there exists an

inference (Fi1 , . . . , Fini
, Fi ) in Γ, such that 0 ≤ ij < i , for

1 ≤ j ≤ ni .
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Soundness and Completeness

Provability `Γ of F from N in Γ:

N `Γ F :⇔ there exists a proof Γ of F from N.

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . ,Fn |= F

Γ is called complete :⇔

N |= F ⇒ N `Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N `Γ ⊥
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Soundness and Completeness

Proposition 2.14

(i) Let Γ be sound. Then N `Γ F ⇒ N |= F

(ii) N `Γ F ⇒ there exist F1, . . . ,Fn ∈ N s.t. F1, . . . ,Fn `Γ F

(resembles compactness).
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Proofs as Trees

markings =̂ formulas

leaves =̂ assumptions and axioms

other nodes =̂ inferences: conclusion =̂ ancestor

premises =̂ direct descendants

P(g(a, b))

P(f (a)) ∨ Q(b)

P(f (a)) ∨ Q(b) ¬P(f (a)) ∨ ¬P(f (a)) ∨ Q(b)

¬P(f (a)) ∨ Q(b) ∨ Q(b)

¬P(f (a)) ∨ Q(b)

Q(b) ∨ Q(b)

Q(b) ¬P(f (a)) ∨ ¬Q(b)

¬P(g(a, b))

⊥
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2.8 Propositional Resolution

We observe that propositional clauses and ground clauses are

the same concept.

In this section we only deal with ground clauses.
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The Resolution Calculus Res

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A
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The Resolution Calculus Res

These are schematic inference rules; for each substitution of the

schematic variables C , D, and A, respectively, by ground clauses

and ground atoms we obtain an inference rule.

As “∨” is considered associative and commutative, we assume

that A and ¬A can occur anywhere in their respective clauses.
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Sample Refutation

1. ¬P(f (a)) ∨ ¬P(f (a)) ∨ Q(b) (given)

2. P(f (a)) ∨ Q(b) (given)

3. ¬P(g(b, a)) ∨ ¬Q(b) (given)

4. P(g(b, a)) (given)

5. ¬P(f (a)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)

6. ¬P(f (a)) ∨ Q(b) (Fact. 5.)

7. Q(b) ∨ Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P(g(b, a)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)
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Resolution with Implicit Factorization RIF

C ∨ A ∨ . . . ∨ A ¬A ∨ D

C ∨ D

1. ¬P(f (a)) ∨ ¬P(f (a)) ∨ Q(b) (given)

2. P(f (a)) ∨ Q(b) (given)

3. ¬P(g(b, a)) ∨ ¬Q(b) (given)

4. P(g(b, a)) (given)

5. ¬P(f (a)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)

6. Q(b) ∨ Q(b) ∨ Q(b) (Res. 2. into 5.)

7. ¬P(g(b, a)) (Res. 6. into 3.)

8. ⊥ (Res. 4. into 7.)
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Soundness of Resolution

Theorem 2.15

Propositional resolution is sound.

Proof:

Let I ∈ Σ-Alg. To be shown:

(i) for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

(ii) for factorization: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

ad (i): Assume premises are valid in I . Two cases need to be

considered: (a) A is valid, or (b) ¬A is valid.

a) I |= A ⇒ I |= D ⇒ I |= C ∨ D

b) I |= ¬A ⇒ I |= C ⇒ I |= C ∨ D

ad (ii): even simpler.
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Soundness of Resolution

Note: In propositional logic (ground clauses) we have:

1. I |= L1 ∨ . . . ∨ Ln ⇔ there exists i : I |= Li .

2. I |= A or I |= ¬A.
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