1.6 The DPLL Procedure

Goal:
Given a propositional formula in CNF (or alternatively, a finite

set \V of clauses), check whether it is satisfiable (and optionally:

output one solution, if it is satisfiable).



Satisfiability of Clause Sets

A = N if and only if A = C for all clauses C in N.

A E C if and only if A |= L for some literal L € C.



Partial Valuations

Since we will construct satisfying valuations incrementally,
we consider partial valuations
(that is, partial mappings A : 1 — {0,1}).

We start with an empty valuation and try to extend it
step by step to all variables occurring in .

If A is a partial valuation, then literals and clauses can be
true, false, or undefined under A.

A clause is true under A if one of its literals is true;
it is false (or “conflicting”) if all its literals are false;
otherwise it is undefined (or “unresolved”).



Unit Clauses

Observation:
Let A be a partial valuation. If the set N contains a clause C,

such that all literals but one in C are false under A, then the

following properties are equivalent:

e there is a valuation that is a model of N and extends A.

e there is a valuation that is a model of N and extends A and

makes the remaining literal L of C true.

C is called a unit clause: L is called a unit literal.



Pure Literals

One more observation:
Let A be a partial valuation and P a variable that is undefined

under A. If P occurs only positively (or only negatively) in
the unresolved clauses in N, then the following properties are

equivalent:

e there is a valuation that is a model of N and extends A.

e there is a valuation that is a model of N and extends A and

assigns true (false) to P.

P is called a pure literal.



The Davis-Putnam-Logemann-Loveland Proc.

boolean DPLL(clause set N, partial valuation A) {

if (all clauses in N are true under A) return true;
elsif (some clause in N is false under A) return false;
elsif (N contains unit clause P) return DPLL(N, AU {P — 1});
elsif (N contains unit clause =P) return DPLL(N, AU {P — 0});
elsif (N contains pure literal P) return DPLL(N, AU {P — 1});
elsif (N contains pure literal =P) return DPLL(N, AU {P — 0});
else {

let P be some undefined variable in N:;

if (DPLL(N, AU {P +— 0})) return true;

else return DPLL(N, AU {P — 1});



The Davis-Putnam-Logemann-Loveland Proc.

Initially, DPLL is called with the clause set N and with an empty
partial valuation A.



The Davis-Putnam-Logemann-Loveland Proc.

In practice, there are several changes to the procedure:
The pure literal check is often omitted (it is too expensive).
The branching variable is not chosen randomly.

The algorithm is implemented iteratively;
the backtrack stack is managed explicitly

(it may be possible and useful to backtrack more than one
level).



DPLL lteratively

An iterative (and generalized) version:

status = preprocess();
if (status !'= UNKNOWN) return status;
while(1) {
decide_next_branch();
while(1) {
status = deduce();
if (status == CONFLICT) {
blevel = analyze_conflict();
if (blevel == 0) return UNSATISFIABLE;
else backtrack(blevel); }

else if (status == SATISFIABLE) return SATISFIABLE;
else break;



DPLL lteratively

preprocess ()

preprocess the input (as far as it is possible without branching);
return CONFLICT or SATISFIABLE or UNKNOWN.

decide_next_branch()

choose the right undefined variable to branch;
decide whether to set it to 0 or 1;

Increase the backtrack level.
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DPLL lteratively

deduce ()

make further assignments to variables (e.g., using the unit
clause rule) until a satisfying assignment is found, or until a

conflict is found, or until branching becomes necessary;
return CONFLICT or SATISFIABLE or UNKNOWN.
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DPLL lteratively

analyze_conflict ()

check where to backtrack.

backtrack(blevel)

backtrack to blevel;
flip the branching variable on that level;

undo the variable assignments in between.
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Branching Heuristics

Choosing the right undefined variable to branch is important for
efficiency, but the branching heuristics may be expensive itself.

State of the art: use branching heuristics that need not be

recomputed too frequently.

In general: choose variables that occur frequently.
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The Deduction Algorithm

For applying the unit rule, we need to know the number of
literals in a clause that are not false.

Maintaining this number is expensive, however.
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The Deduction Algorithm

Better approach: “Two watched literals™:

In each clause, select two (currently undefined) “watched”

literals.

For each variable P, keep a list of all clauses in which P is
watched and a list of all clauses in which =P is watched.

If an undefined variable is set to 0 (or to 1), check all clauses
in which P (or =P) is watched and watch another literal (that
is true or undefined) in this clause if possible.

Watched literal information need not be restored upon
backtracking.
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Conflict Analysis and Learning

Goal: Reuse information that is obtained in one branch in further
branches.
Method: Learning:

If a conflicting clause is found, use the resolution rule to

derive a new clause and add it to the current set of clauses.

Problem: This may produce a large number of new clauses;
therefore it may become necessary to delete some of them

afterwards to save space.
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Backjumping

Related technique:
non-chronological backtracking ( “backjumping”):

If a conflict is independent of some earlier branch, try to skip
that over that backtrack level.
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Restart

Runtimes of DPLL-style procedures depend extremely on the
choice of branching variables.

If no solution is found within a certain time limit, it can be
useful to restart from scratch with another choice of branchings

(but learned clauses may be kept).
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Further Information

The ideas described so far heve been implemented in the SAT
checker Chaff.

Further information:

Lintao Zhang and Sharad Malik:

The Quest for Efficient Boolean Satisfiability Solvers,
Proc. CADE-18, LNAI 2392, pp. 295-312, Springer, 2002.
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