
2.15 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem

Proving, Springer-Verlag, New York, 1996, chapters 3, 6, 7.

R. M. Smullyan: First-Order Logic, Dover Publ., New York,

1968, revised 1995.

Like resolution, semantic tableaux were developed in the sixties,

by R. M. Smullyan on the basis of work by Gentzen in the 30s

and of Beth in the 50s.

(According to Fitting, semantic tableaux were first proposed by

the Polish scientist Z. Lis in a paper in Studia Logica 10, 1960

that was only recently rediscovered.)

1

Idea

Idea (for the propositional case):

A set {F ∧ G} ∪ N of formulas has a model if and only if

{F ∧ G , F , G} ∪ N has a model.

A set {F ∨ G} ∪ N of formulas has a model if and only if

{F ∨ G , F} ∪ N or {F ∨ G , G} ∪ N has a model.

(and similarly for other connectives).

To avoid duplication, represent sets as paths of a tree.

Continue splitting until two complementary formulas are

found ⇒ inconsistency detected.

2

A Tableau for {P ∧ ¬(Q ∨ ¬R), ¬Q ∨ ¬R}

3. ¬Q

5. P

6. ¬(Q ∨ ¬R)

7. ¬Q

8. ¬¬R

9. R

4. ¬R

10. P

11. ¬(Q ∨ ¬R)

�
�
�
�
�

P
P
P
P
P

1. P ∧ ¬(Q ∨ ¬R)

2. ¬Q ∨ ¬R

This tableau is not

“maximal”, however

the first “path” is.

This path is not

“closed”, hence the

set {1, 2} is satisfiable.

(These notions will all

be defined below.)

3

Properties

Properties of tableau calculi:

analytic: inferences according to the logical content of the

symbols.

goal oriented: inferences operate directly on the goal to be

proved (unlike, e. g., ordered resolution).

global: some inferences affect the entire proof state (set of

formulas), as we will see later.

4

Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and

expand the tableau at a leaf. We append the conclusions of a

rule (horizontally or vertically) at a leaf, whenever the premise

of the expansion rule matches a formula appearing anywhere on

the path from the root to that leaf.

Negation Elimination

¬¬F
F

¬>
⊥

¬⊥
>

5

Propositional Expansion Rules

α-Expansion

(for formulas that are essentially conjunctions: append

subformulas α1 and α2 one on top of the other)

α

α1

α2

β-Expansion

(for formulas that are essentially disjunctions:

append β1 and β2 horizontally, i. e., branch into β1 and β2)

β

β1 | β2

6

Classification of Formulas

conjunctive disjunctive

α α1 α2 β β1 β2

X ∧ Y X Y ¬(X ∧ Y) ¬X ¬Y

¬(X ∨ Y) ¬X ¬Y X ∨ Y X Y

¬(X → Y) X ¬Y X → Y ¬X Y

We assume that the binary connective ↔ has been eliminated in

advance.

7

Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered

tree and inductively defined as follows: Let {F1, . . . ,Fn} be a

set of formulas.

(i) The tree consisting of a single path

F1

...

Fn

is a tableau for {F1, . . . ,Fn}.

(We do not draw edges if nodes have only one successor.)

8

Tableaux: Notions

(ii) If T is a tableau for {F1, . . . ,Fn} and if T ′ results from T

by applying an expansion rule then T ′ is also a tableau for

{F1, . . . ,Fn}.

A path (from the root to a leaf) in a tableau is called closed,

if it either contains ⊥, or else it contains both some formula F

and its negation ¬F . Otherwise the path is called open.

A tableau is called closed, if all paths are closed.

A tableau proof for F is a closed tableau for {¬F}.

9

Tableaux: Notions

A path P in a tableau is called maximal, if for each non-atomic

formula F on P there exists a node in P at which the expansion

rule for F has been applied.

In that case, if F is a formula on P, P also contains:

(i) F1 and F2, if F is a α-formula,

(ii) F1 or F2, if F is a β-formula, and

(iii) F ′, if F is a negation formula, and F ′ the conclusion of

the corresponding elimination rule.

A tableau is called maximal, if each path is closed or maximal.

10

Tableaux: Notions

A tableau is called strict, if for each formula the corresponding

expansion rule has been applied at most once on each path

containing that formula.

A tableau is called clausal, if each of its formulas is a clause.

11

A Sample Proof

One starts out from the negation of the formula to be proved.

10. P [41] 11. S [42]

�
�
�
�
�

X
X
X
X
X

8. ¬P [21] 9. Q → R [22]

�
�
�
�
�

hhhhhhhh

1. ¬[(P → (Q → R)) → ((P ∨ S) → ((Q → R) ∨ S))]

2. (P → (Q → R)) [11]

3. ¬((P ∨ S) → ((Q → R) ∨ S)) [12]

4. P ∨ S [31]

5. ¬((Q → R) ∨ S)) [32]

6. ¬(Q → R) [51]

7. ¬S [52]

There are three paths, each of them closed.

12

Properties of Propositional Tableaux

We assume that T is a tableau for {F1, . . . ,Fn}.

Theorem 2.47:

{F1, . . . ,Fn} satisfiable ⇔ some path (i.e., the set of its

formulas) in T is satisfiable.

(Proof by induction over the structure of T .)

Corollary 2.48:

T closed ⇒ {F1, . . . ,Fn} unsatisfiable

13

Properties of Propositional Tableaux

Theorem 2.49:

Let T be a strict propositional tableau. Then T is finite.

Proof:

New formulas resulting from expansion are either ⊥, > or

subformulas of the expanded formula. By strictness, on each

path a formula can be expanded at most once. Therefore, each

path is finite, and a finitely branching tree with finite paths is

finite (König’s Lemma).

Conclusion: Strict and maximal tableaux can be effectively

constructed.

14

Refutational Completeness

Theorem 2.50:

Let P be a maximal, open path in a tableau. Then set of

formulas on P is satisfiable.

Proof (we consider only the case of a clausal tableau):

Let N be the set of formulas on P. As P is open, ⊥ is not in N. Let

C ∨ A and D ∨ ¬A be two resolvable clauses in N. One of the two

subclauses C or D, C say, is not empty, as otherwise P would be

closed. Since P is maximal, in P the β-rule was applied on C ∨ A.

Therefore, P (and N) contains a proper subclause of C ∨ A, and

hence C ∨ A is redundant w. r. t. N. By the same reasoning, if N

contains a clause that can be factored, that clause must be redundant

w. r. t. N. In other words, N is saturated up to redundancy wrt.

Res(olution). Now apply Theorem 2.23 to prove satisfiability of N.

15

Refutational Completeness

Theorem 2.51:

{F1, . . . ,Fn} satisfiable ⇔ there exists no closed strict tableau

for {F1, . . . ,Fn}.

Proof:

One direction is clear by Theorem 2.47. For the reverse direction,

let T be a strict, maximal tableau for {F1, . . . ,Fn} and let P

be an open path in T . By the previous theorem, the set of

formulas on P, and hence by Theorem 2.47 the set {F1, . . . ,Fn},

is satisfiable.

16

Consequences

The validity of a propositional formula F can be established by

constructing a strict, maximal tableau for {¬F}:

• T closed ⇔ F valid.

• It suffices to test complementarity of paths wrt. atomic

formulas (cf. reasoning in the proof of Theorem 2.50).

• Which of the potentially many strict, maximal tableaux one

computes does not matter. In other words, tableau expan-

sion rules can be applied don’t-care non-deterministically

(“proof confluence”).

17

Consequences

• The expansion strategy, however, can have a dramatic

impact on tableau size.

• Since it is sufficient to saturate paths wrt. ordered resolution

(up to redundancy), tableau expansion rules can be even

more restricted, in particular by certain ordering constraints.

18

Semantic Tableaux for First-Order Logic

Additional classification of quantified formulas:

universal existential

γ γ(t) δ δ(t)

∀xF F [t/x] ∃xF F [t/x]

¬∃xF ¬F [t/x] ¬∀xF ¬F [t/x]

Moreover we assume that the set of variables X is partitioned

into 2 disjoint infinite subsets Xg and Xf , so that bound [free]

variables variables can be chosen from Xg [Xf]. (This avoids the

variable capturing problem.)

19

Additional Expansion Rules

γ-expansion

γ

γ(x)
where x is a variable in Xf

δ-expansion
δ

δ(f (x1, . . . , xn))

where f is a new Skolem function, and the xi are the free

variables in δ

20

Additional Expansion Rules

Skolemization becomes part of the calculus and needs not

necessarily be applied in a preprocessing step. Of course, one

could do Skolemization beforehand, and then the δ-rule would

not be needed.

Note that the rules are parametric, instantiated by the choices

for x and f , respectively. Strictness here means that only one

instance of the rule is applied on each path to any formula on

the path.

In this form the rules go back to Hähnle and Schmitt: The

liberalized δ-rule in free variable semantic tableaux, J. Automated

Reasoning 13,2, 1994, 211–221.

21

Definition: Free-Variable Tableau

Let {F1, . . . ,Fn} be a set of closed formulas.

(i) The tree consisting of a single path

F1

...

Fn

is a tableau for {F1, . . . ,Fn}.

(ii) If T is a tableau for {F1, . . . ,Fn} and if T ′ results by

applying an expansion rule to T , then T ′ is also a tableau

for {F1, . . . ,Fn}.

22

Definition: Free-Variable Tableau

(iii) If T is a tableau for {F1, . . . ,Fn} and if σ is a substitution,

then Tσ is also a tableau for {F1, . . . ,Fn}.

The substitution rule (iii) may, potentially, modify all the

formulas of a tableau. This feature is what is makes the tableau

method a global proof method. (Resolution, by comparison, is a

local method.)

If one took (iii) literally, by repeated application of γ-rule one

could enumerate all substitution instances of the universally

quantified formulas. That would be a major drawback compared

with resolution. Fortunately, we can improve on this.

23

Example

1. ¬[∃w∀x p(x , w , f (x , w)) → ∃w∀x∃y p(x ,w , y)]

2. ∃w∀x p(x , w , f (x , w)) 11 [α]

3. ¬∃w∀x∃y p(x , w , y) 12 [α]

4. ∀x p(x , a, f (x , a)) 2(a) [δ]

5. ¬∀x∃y p(x , v1, y) 3(v1) [γ]

6. ¬∃y p(b(v1), v1, y) 5(b(v1)) [δ]

7. p(v2, a, f (v2, a)) 4(v2) [γ]

8. ¬p(b(v1), v1, v3) 6(v3) [γ]

7. and 8. are complementary (modulo unification):

v2
.
= b(v1), a

.
= v1, f (v2, a)

.
= v3

is solvable with an mgu σ = [a/v1, b(a)/v2, f (b(a), a)/v3],

and hence, Tσ is a closed (linear) tableau for the formula in 1.

24

AMGU-Tableaux

Idea: Restrict the substitution rule to unifiers of complementary

formulas.

We speak of an AMGU-Tableau, whenever the substitution rule

is only applied for substitutions σ for which there is a path in T

containing two literals ¬A and B such that σ = mgu(A,B).

25

Correctness

Given an signature Σ, by Σsko we denote the result of adding

infinitely many new Skolem function symbols which we may use

in the δ-rule.

Let A be a Σsko-interpretation, T a tableau, and β a variable

assignment over A.

T is called (A,β)-valid, if there is a path Pβ in T such that

A,β |= F , for each formula F on Pβ .

T is called satisfiable if there exists a structure A such that for

each assignment β the tableau T is (A,β)-valid.

(This implies that we may choose Pβ depending on β.)

26

Correctness

Theorem 2.52:

Let T be a tableau for {F1, . . . ,Fn}, where the Fi are closed

Σ-formulas. Then {F1, . . . ,Fn} is satisfiable ⇔ T is satisfiable.

(Proof of “⇒” by induction over the depth of T . For δ one

needs to reuse the ideas for proving that Skolemization preserves

[un-]satisfiability.)

27

Incompleteness of Strictness

Strictness for γ is incomplete:

5. ¬p(a) 31 6. ¬p(b) 32

�
�
�
�
�
�

P
P
P
P
P

1. ¬[∀x p(x) → (p(a) ∧ p(b))]

2. ∀x p(x) 11

3. ¬(p(a) ∧ p(b)) 12

4. p(v1) 2(v1)

If we placed a strictness requirement also on applications of γ,

the tableau would only be expandable by the substitution rule.

However, there is no substitution (for v1) that can close both

paths simultaneously.

28

Multiple Application of γ Solves the Problem

5. ¬p(a) 31 6. ¬p(b) 32

7. p(v2) 2v2


`````

1. ¬[∀x p(x) → (p(a) ∧ p(b))]

2. ∀x p(x) 11

3. ¬(p(a) ∧ p(b)) 12

4. p(v1) 2v1

The point is that different applications of γ to ∀x p(x) may

employ different free variables for x .

Now, by two applications of the AMGU-rule, we obtain the

substitution [a/v1, b/v2] closing the tableau.

29



Multiple Application of γ Solves the Problem

Therefore strictness for γ should from now on mean that each

instance of γ (depending on the choice of the free variable) is

applied at most once to each γ-formula on any path.

30



Refutational Completeness

Theorem 2.53:

{F1, . . . ,Fn} satisfiable ⇔ there exists no closed, strict

AMGU-Tableau for {F1, . . . ,Fn}.

For the proof one defines a fair tableau expansion process

converging against an infinite tableau where on each path each

γ-formula is expanded into all its variants (modulo the choice of

the free variable).

One may then again show that each path in that tableau is

saturated (up to redundancy) by resolution. This requires

to apply the lifting lemma for resolution in order to show

completeness of the AMGU-restriction.

31



How Often Do we Have to Apply γ ?

Theorem 2.54:

There is no recursive function f : FΣ × FΣ → N such that,

if the closed formula F is unsatisfiable, then there exists a

closed tableau for F where to all formulas ∀xG appearing in

T the γ-rule is applied at most f (F ,∀xG ) times on each path

containing ∀xG .

Otherwise unsatisfiability or, respectively, validity for first-order logic

would be decidable. In fact, one would be able to enumerate in finite

time all tableaux bounded in depth as indicated by f . In other words,

free-variable tableaux are not recursively bounded in their depth.

Again ∀ is treated like an infinite conjunction. By repeatedly applying

γ, together with the substitution rule, one can enumerate all instances

F [t/x ] vertically, that is, conjunctively, in each path containing ∀xF .

32



Semantic Tableaux vs. Resolution

• Both methods are machine methods on which today’s

provers are based upon.

• Tableaux: global, goal-oriented, “backward”.

• Resolution: local, “forward”.

• Goal-orientation is a clear advantage if only a small subset

of a large set of formulas is necessary for a proof.

(Note that resolution provers saturate also those parts of

the clause set that are irrelevant for proving the goal.)

33



Semantic Tableaux vs. Resolution

• Like resolution, the tableau method, in order to be useful

in practice, must be accompanied by refinements: lemma

generation, ordering restrictions, efficient term and proof

data structures.

• Resolution can be combined with more powerful redundancy

elimination methods.

• Because of its global nature redundancy elimination is more

difficult for the tableau method.

• Resolution can be refined to work well with equality (see

next chapter) and algebraic structures; for tableaux this

seems to be impossible.

34


