Advanced C Programming
gmake, gdb

Sebastian Hack
hackQcs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

18.11.2008

SAARLAND

l l I I UNIVERSITY
I R

COMPUTER SCIENCE

make

vV Yy vy

v

Automate and optimize construction of software
Specify dependencies among files
and give rules how to transform them

Can be used for any kind of “compilation task”

> Preparing ETEX documents
> Transforming images using . ..
> and so on

Several variants exist:

> GNU Make (covered in this lecture)
> Microsoft nmake
> BSD make

GNU Make

most powerful make variant
available on almost every platform
POSIX.2 compatible

SysV make variant

vV v.v v .Yy

Attention: not entirely compatible to BSD make and nmake

What is Make?

An Example

» Suppose we have a small project containing:
> Two translation units kbd.c console.c
> Two header files defs.h command.h both included by both .c files
> The resulting binary shall be called edit

kbd.c console.c
#include "defs.h" #include "defs.h"
#include "command.h" #include "command.h"

» To build edit

» we compile both .c files to .o files
> link the .o files together

» When we develop (edit .c and .h files)

> we need to rebuild the .o files affected by the changes
> and finally the binary

» Writing the appropriate compiler invocations by hand all the time is
cumbersome

What is Make?

defs.h command.h and console.c are prerequisites for console.o
» console.o needs to be rebuilt when one of those are changed

» Rules describe dependencies and give commands how files are
produced from others:

target prerequisites (dependencies)
console.o: console.c defs.h command.h
commands
cc -c console.c
means
If the modification time of one or more of
console.c defs.h command.h
is newer than the one of console.o, execute

cc -c console.c
to update console.o

Dependencies

» According to the rules, Make constructs a dependency graph
» This graph needs to be acyclic (DAG)
» In our example:

edit —— console.o — console.c

\ >2mmand .h
defs.h
/

kbd. o
T imd.c

» When processing the Makefile Make traverses the graph from
leaves to root

» If the modification date of a child is newer than the node’s, the node
needs to be redone

Make

Basics

vV vy VY

Basic syntax

tgtl tgt2 ... : preql preq2
cmd1
cmd?2
Ingredients:
> Targets: tgtl, tgt2, ...
> Prerequisites: preql, preq2, ...
» Commands: cmd1, cmd?2, ...
tgtl, tgt2, ..., preql, preq2, ... are files
tgtl, tgt2, ... are dependent on preql, preq2, ...
Executing cmd1, cmd?2 produces tgt2, ..., from preqi, ...
Attention:

> commands must be preceded by a tab
> Otherwise: *** missing separator. Stop.

~

Variables

» For example, some C project:

edit : kbd.o console.o
cc -o edit kbd.o comnsole.o
kbd.o : kbd.c defs.h command.h
cc -c kbd.c

console.o : console.c defs.h command.h
cc -c console.c
clean

rm -f kbd.o console.o edit

> Variables simplify your life:

objects = kbd.o console.o

edit : $(objects)
cc -o $@ $(objects)

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

console.o : console.c defs.h command.h
cc -c console.c
clean

rm -f $(objects) edit

> $@ name of target(s) in rule

Variables

> Variables are evaluated lazily

» If variable is never used, right side is not evaluated
= take care of side effects (use :=)

» What does this print?
foo = $(bar)

bar = $(ugh)
ugh = Huh?

all:
echo $(foo)

» If you want expansion at definition point, use :=

ugh := Huh?
bar := $(ugh)
foo := $(bar)
all:

echo $(foo)

» Add to a list with +=

files += a.c b.c

> Set variable only when not yet set: 7=

Implicit Rules

| 2

Life is even simpler:

objects = kbd.o console.o
edit : $(objects)
cc -o edit $(objects)

kbd.o : defs.h command.h
console.o : defs.h command.h

clean
rm edit $(objects)

» Make has a database of implicit rules

vV v vy

It knows how to make a .o file from a .c file:
h.o : h.c

$(CC) $(CFLAGS) $(CPPFLAGS) -c $<
$< name of first prerequisite in rule
$(CC) name of C compiler on the system
$ (CPPFLAGS) flags to give the C preprocessor
$ (CFLAGS) flags to give the C compiler

Implicit Rules

» You can (re-)define them yourself:

Compile a LaTeX file
%.pdf : %.tex
pdflatex $<

Convert png to jpeg
%.jpg : 'h.png
pngtopnm $< | pnmtojpeg > $@
» For C projects, you do not need to redefine implicit rules
» But you might want to set the variables $ (CFLAGS), ...

» Example:
cC = 166 # use intel C compiler
CFLAGS = -03 # activate all optimizations

CPPFLAGS += -I/usr/local/include # add to include path

Automatically Computed Prerequisites

Since GCC parses all the C files ...
. it can also compute the dependencies automatically

Use switch -M instead of —c to emit Make rules from .c files

vV v v v

For example:

/* kbd.c */
#include "defs.h"
#include "command.h"

/* ... %/
and

shell$ gcc -M kbd.c
kbd.o: kbd.c defs.h command.h

Automatically Computed Prerequisites

Practice

» Define implicit rule to create a .d file from a .c file

%.d : h.c
$(CC) -M $< > g0

» After first target, include all .d files
(variables come in handy!)

ifeq ($(findstring $(MAKECMDGOALS), clean),)
-include $(objects:.o=.d)
endif

$(a:x=y) substitutes suffix x by y in every word in list a
ifdef avoids creating dependencies when only cleaning

- in front of command suppresses warnings

include creates dependency! = causes .d files to be created

vVYyVvVYly

» Dependencies are updated automatically!
Homework: Why?

Our example now

kbd.o console.o
$(objects:.o=.d)

objects
depends

.PHONY: clean

edit : $(objects)
cc -o $@ $(objects)

ifeq ($(findstring $(MAKECMDGOALS), clean),)
-include $(depends)
endif

%h-d : h.c
$(CC) -M $< > $e

clean
rm -f $(objects) edit

» clean is no file!

» To avoid confusion with potentially existing files declare as phony

Make

Tips & Tricks

» It is not bad to put configuration settings to be provided by the user
into a separate file

Makefile config.mak
000 NDEBUG =1
include config.mak MY_CFLAGS =

MY_CPPFLAGS

oo -I$ (HOME)/include
Adapt C flags for

debug/optimized build
ifdef NDEBUG

CFLAGS += -03 -DNDEBUG
else

CFLAGS += -00 -g

endif

CFLAGS += $(MY_CFLAGS)
CPPFLAGS += $(MY_CPPFLAGS)
edit : $(objects)

» For all the details, see GNU Make manual

Make

Tips & Tricks 2

» Put generated files (.o, .d, final binary) into separate directory

» Requires more Make and compiler flag magic

builddir = build

sources = kbd.c console.c

objects = $(addprefix $(builddir)/,$(sources:.c=.0))
deps = $(objects:.o0=.d)

$(builddir)/%.o : %.c
$(CC) $(CFLAGS) $(CPPFLAGS) -o $@ -c $<

$(builddir)/%.d : %.c
$(CC) $(CFLAGS) $(CPPFLAGS) -MT $(@:.d=.0) -M $< > $0

= generated files do not pollute your source directory

Make

Tips & Tricks 3

» For nicer output, use Linux kernel style pretty printing

Q 7= @

$(builddir)/%.d : %.c

@echo "===>_DEPEND_ $@"

(Q)(CcC) $(CFLAGS) $(CPPFLAGS)
$(builddir)/%.o : %.c

@echo "===> ,COMPILE $@"

(Q)(CC) $(CFLAGS) $(CPPFLAGS) -c $<

> @ at the beginning of the line does not print the command
» See full output with

shell$ make Q=

Make

Tips & Tricks 4 — General Remarks

1. Provide target all that build everything

Make it the first (default) target
2. Use make -j N to build simultaneously on N CPUs
3. Never call Make recursively in subdirectories

> Instead, use includes
» Calling make recursive disrupts automated dependency tracking
> Parallelization not possible!

4. The Quick Reference in the GNU Make Manual is very good!

GDB

>

v

v

v

v

Compile program with debug support:
> Debug symbols: -g
> No optimizations: -00

Why?

Debug symbols tell the debugger

Which objects are where (functions, global variables)
layout of stack frames

layout of structs

types, names, and so on

vy vy VvVYy

Optimizations alter the program to strongly by
> function inlining
> loop unrolling
> if-conversion
> code re-ordered
1 hard to establish relation between source and binary

Using -00 everything remains as in the source

Breakpoints

» Tell the debugger when to stop the execution
(gdb) b myfunc
stops execution each time myfunc is entered
» Can also give filename:lineno
» Can be dependent on condition
(gdb) b myfunc if x > 5
(gdb) b file.c:55 if node->id==4711

> Beware of side effects in expressions!

Watchpoints

v

A breakpoint on data

(gdb) watch a

(gdb) watch *p

» gdb stops whenever watched expression changes

» Program execution might be slow = conditions checked on each
instruction

» Some architectures have hardware support for signalling changing
memory contents
i debug registers

Commands

Controlling Execution
» continue run till next breakpoint

> step goes to next line of source code
will enter functions

> next goes to next line of source code
will step over functions

» use abbreviations: cont, s, and n

Inspecting the stack
> backtrace (bt) shows active stack frames
» frame N switches to given stack frame

» info locals gives values for local variables in current frame

Viewing Data

» Use print (p) to view value of expression
» Use x to inspect contents of memory
> Use display to show contents at each prompt

print somevar

X &somevar

x/t &somevar # binary
display /x somevar # hex format

» /x is a format
» Some Formats:
> x hex
> t binary

> f float
> a address

> s string
>

Macros

» GDB has a powerful macro language

» Define macros to be laoded at start in .gdbinit

Some examples:

1. Execute to a certain program location and show instruction at
program counter

define g

tbreak $arg0
continue

x/1i $pc

QRhE =s==oo====o \n
end

2. Custom print routines

define vec
call printf ("[%f, %f, %f, %fl\n",

$arg0 [0], $arg0[1], $argl2], $argl3])
end

How does it work?

vV v.v. v Yy

At breakpoints, gdb changes the machine code
Inserts code that causes a trap

On x86, there is a special instruction called int3
You can use that yourself

Suppose you have some events where it is too cumbersome to
specify breakpoints, call

int do_breakpoints = 0; /* e.g. set by command line */

#if defined (__GNUC__)
&& (defined(__i386__) || defined(__x86_64))
extern void enter_debugger (void) {
if (do_breakpoints)

__asm__ __volatile__("int3");
}
#else
extern void enter_debugger (void) { }
#endif

	Debugging

