
Advanced C Programming
gmake, gdb

Sebastian Hack
hack@cs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

18.11.2008

computer science

saarland
university

1

make

I Automate and optimize construction of software

I Specify dependencies among files

I and give rules how to transform them

I Can be used for any kind of “compilation task”
I Preparing LATEX documents
I Transforming images using . . .
I and so on

I Several variants exist:
I GNU Make (covered in this lecture)
I Microsoft nmake
I BSD make

2

GNU Make

I most powerful make variant

I available on almost every platform

I POSIX.2 compatible

I SysV make variant

I Attention: not entirely compatible to BSD make and nmake

3

What is Make?
An Example

I Suppose we have a small project containing:
I Two translation units kbd.c console.c
I Two header files defs.h command.h both included by both .c files
I The resulting binary shall be called edit

kbd.c

#include "defs.h"

#include "command.h"

...

console.c

#include "defs.h"

#include "command.h"

...

I To build edit
I we compile both .c files to .o files
I link the .o files together

I When we develop (edit .c and .h files)
I we need to rebuild the .o files affected by the changes
I and finally the binary

I Writing the appropriate compiler invocations by hand all the time is
cumbersome

4

What is Make?

I defs.h command.h and console.c are prerequisites for console.o

I console.o needs to be rebuilt when one of those are changed

I Rules describe dependencies and give commands how files are
produced from others:

target prerequisites (dependencies)

console.o: console.c defs.h command.h

commands

cc -c console.c

. . . means

If the modification time of one or more of

console.c defs.h command.h

is newer than the one of console.o, execute

cc -c console.c

to update console.o

5

Dependencies

I According to the rules, Make constructs a dependency graph

I This graph needs to be acyclic (DAG)

I In our example:

edit console.o console.c

command.h

defs.h

kbd.c
kbd.o

I When processing the Makefile Make traverses the graph from
leaves to root

I If the modification date of a child is newer than the node’s, the node
needs to be redone

6

Make
Basics

I Basic syntax

tgt1 tgt2 ... : preq1 preq2 ...

cmd1

cmd2

...

I Ingredients:
I Targets: tgt1, tgt2, . . .
I Prerequisites: preq1, preq2, . . .
I Commands: cmd1, cmd2, . . .

I tgt1, tgt2, . . . , preq1, preq2, . . . are files

I tgt1, tgt2, . . . are dependent on preq1, preq2, . . .

I Executing cmd1, cmd2 produces tgt2, . . . , from preq1, . . .

I Attention:
I commands must be preceded by a tab
I Otherwise: *** missing separator. Stop.

7

Variables
I For example, some C project:

edit : kbd.o console.o

cc -o edit kbd.o console.o

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

console.o : console.c defs.h command.h

cc -c console.c

clean :

rm -f kbd.o console.o edit

I Variables simplify your life:

objects = kbd.o console.o

edit : $(objects)

cc -o $@ $(objects)

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

console.o : console.c defs.h command.h

cc -c console.c

clean :

rm -f $(objects) edit

I $@ name of target(s) in rule

8

Variables
I Variables are evaluated lazily
I If variable is never used, right side is not evaluated

+ take care of side effects (use :=)
I What does this print?

foo = $(bar)

bar = $(ugh)

ugh = Huh?

all:

echo $(foo)

I If you want expansion at definition point, use :=

ugh := Huh?

bar := $(ugh)

foo := $(bar)

all:

echo $(foo)

I Add to a list with +=

files += a.c b.c

I Set variable only when not yet set: ?=
9

Implicit Rules
I Life is even simpler:

objects = kbd.o console.o

edit : $(objects)

cc -o edit $(objects)

kbd.o : defs.h command.h

console.o : defs.h command.h

clean :

rm edit $(objects)

I Make has a database of implicit rules

I It knows how to make a .o file from a .c file:

%.o : %.c

$(CC) $(CFLAGS) $(CPPFLAGS) -c $<

I $< name of first prerequisite in rule

I $(CC) name of C compiler on the system

I $(CPPFLAGS) flags to give the C preprocessor

I $(CFLAGS) flags to give the C compiler

10

Implicit Rules

I You can (re-)define them yourself:

Compile a LaTeX file

%.pdf : %.tex

pdflatex $<

Convert png to jpeg

%.jpg : %.png

pngtopnm $< | pnmtojpeg > $@

I For C projects, you do not need to redefine implicit rules

I But you might want to set the variables $(CFLAGS), . . .

I Example:

CC = icc # use intel C compiler

CFLAGS = -O3 # activate all optimizations

CPPFLAGS += -I/usr/local/include # add to include path

11

Automatically Computed Prerequisites

I Since GCC parses all the C files . . .

I . . . it can also compute the dependencies automatically

I Use switch -M instead of -c to emit Make rules from .c files

I For example:

/* kbd.c */

#include "defs.h"

#include "command.h"

/* ... */

and

shell$ gcc -M kbd.c

kbd.o: kbd.c defs.h command.h

12

Automatically Computed Prerequisites
Practice

I Define implicit rule to create a .d file from a .c file

%.d : %.c

$(CC) -M $< > $@

I After first target, include all .d files
(variables come in handy!)

ifeq ($(findstring $(MAKECMDGOALS), clean),)

-include $(objects :.o=.d)

endif

I $(a:x=y) substitutes suffix x by y in every word in list a
I ifdef avoids creating dependencies when only cleaning
I - in front of command suppresses warnings
I include creates dependency! + causes .d files to be created

I Dependencies are updated automatically!
Homework: Why?

13

Our example now

objects = kbd.o console.o

depends = $(objects :.o=.d)

.PHONY: clean

edit : $(objects)

cc -o $@ $(objects)

ifeq ($(findstring $(MAKECMDGOALS), clean),)

-include $(depends)

endif

%.d : %.c

$(CC) -M $< > $@

clean :

rm -f $(objects) edit

I clean is no file!

I To avoid confusion with potentially existing files declare as phony

14

Make
Tips & Tricks

I It is not bad to put configuration settings to be provided by the user
into a separate file

Makefile

...

include config.mak

...

Adapt C flags for

debug/optimized build

ifdef NDEBUG

CFLAGS += -O3 -DNDEBUG

else

CFLAGS += -O0 -g

endif

CFLAGS += $(MY_CFLAGS)

CPPFLAGS += $(MY_CPPFLAGS)

edit : $(objects)

config.mak

NDEBUG = 1

MY_CFLAGS =

MY_CPPFLAGS = -I$(HOME)/ include

I For all the details, see GNU Make manual

15

Make
Tips & Tricks 2

I Put generated files (.o, .d, final binary) into separate directory

I Requires more Make and compiler flag magic

builddir = build

sources = kbd.c console.c

objects = $(addprefix $(builddir)/,$(sources :.c=.o))

deps = $(objects :.o=.d)

...

$(builddir)/%.o : %.c

$(CC) $(CFLAGS) $(CPPFLAGS) -o $@ -c $<

$(builddir)/%.d : %.c

$(CC) $(CFLAGS) $(CPPFLAGS) -MT $(@:.d=.o) -M $< > $@

+ generated files do not pollute your source directory

16

Make
Tips & Tricks 3

I For nicer output, use Linux kernel style pretty printing

Q ?= @

...

$(builddir)/%.d : %.c

@echo "===> DEPEND $@"

(Q)(CC) $(CFLAGS) $(CPPFLAGS) ...

$(builddir)/%.o : %.c

@echo "===> COMPILE $@"

(Q)(CC) $(CFLAGS) $(CPPFLAGS) -c $<

...

I @ at the beginning of the line does not print the command

I See full output with

shell$ make Q=

17

Make
Tips & Tricks 4 — General Remarks

1. Provide target all that build everything
Make it the first (default) target

2. Use make -j N to build simultaneously on N CPUs

3. Never call Make recursively in subdirectories
I Instead, use includes
I Calling make recursive disrupts automated dependency tracking
I Parallelization not possible!

4. The Quick Reference in the GNU Make Manual is very good!

18

GDB

I Compile program with debug support:
I Debug symbols: -g
I No optimizations: -O0

I Why?

I Debug symbols tell the debugger
I Which objects are where (functions, global variables)
I layout of stack frames
I layout of structs
I types, names, and so on

I Optimizations alter the program to strongly by
I function inlining
I loop unrolling
I if-conversion
I code re-ordered

+ hard to establish relation between source and binary

I Using -O0 everything remains as in the source

19

Breakpoints

I Tell the debugger when to stop the execution

(gdb) b myfunc

stops execution each time myfunc is entered

I Can also give filename:lineno

I Can be dependent on condition

(gdb) b myfunc if x > 5

(gdb) b file.c:55 if node ->id ==4711

I Beware of side effects in expressions!

20

Watchpoints

I A breakpoint on data

(gdb) watch a

(gdb) watch *p

I gdb stops whenever watched expression changes

I Program execution might be slow + conditions checked on each
instruction

I Some architectures have hardware support for signalling changing
memory contents
+ debug registers

21

Commands

Controlling Execution

I continue run till next breakpoint

I step goes to next line of source code
will enter functions

I next goes to next line of source code
will step over functions

I use abbreviations: cont, s, and n

Inspecting the stack

I backtrace (bt) shows active stack frames

I frame N switches to given stack frame

I info locals gives values for local variables in current frame

22

Viewing Data

I Use print (p) to view value of expression

I Use x to inspect contents of memory

I Use display to show contents at each prompt

print somevar

x &somevar

x/t &somevar # binary

display /x somevar # hex format

I /x is a format

I Some Formats:
I x hex
I t binary
I f float
I a address
I s string
I . . .

23

Macros

I GDB has a powerful macro language

I Define macros to be laoded at start in .gdbinit

Some examples:

1. Execute to a certain program location and show instruction at
program counter

define g

tbreak $arg0

continue

x/1i $pc

echo ----------\n

end

2. Custom print routines

define vec

call printf ("[%f, %f, %f, %f]\n",

$arg0[0], $arg0 [1], $arg[2], $arg [3])

end

24

How does it work?

I At breakpoints, gdb changes the machine code

I Inserts code that causes a trap

I On x86, there is a special instruction called int3

I You can use that yourself

I Suppose you have some events where it is too cumbersome to
specify breakpoints, call

int do_breakpoints = 0; /* e.g. set by command line */

#if defined(__GNUC__)

&& (defined(__i386__) || defined(__x86_64))

extern void enter_debugger(void) {

if (do_breakpoints)

__asm__ __volatile__("int3");

}

#else

extern void enter_debugger(void) { }

#endif

25

	Debugging

