Advanced C Programming
gmake, gdb

Sebastian Hack
hackQcs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

18.11.2008

SAARLAND

l l I I UNIVERSITY
I R

COMPUTER SCIENCE




make
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Automate and optimize construction of software
Specify dependencies among files
and give rules how to transform them

Can be used for any kind of “compilation task”

> Preparing ETEX documents
> Transforming images using . ..
> and so on

Several variants exist:

> GNU Make (covered in this lecture)
> Microsoft nmake
> BSD make



GNU Make

most powerful make variant
available on almost every platform
POSIX.2 compatible

SysV make variant
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Attention: not entirely compatible to BSD make and nmake



What is Make?

An Example

» Suppose we have a small project containing:
> Two translation units kbd.c console.c
> Two header files defs.h command.h both included by both .c files
> The resulting binary shall be called edit

kbd.c console.c
#include "defs.h" #include "defs.h"
#include "command.h" #include "command.h"

» To build edit

» we compile both .c files to .o files
> link the .o files together

» When we develop (edit .c and .h files)

> we need to rebuild the .o files affected by the changes
> and finally the binary

» Writing the appropriate compiler invocations by hand all the time is
cumbersome



What is Make?

defs.h command.h and console.c are prerequisites for console.o
» console.o needs to be rebuilt when one of those are changed

» Rules describe dependencies and give commands how files are
produced from others:

# target prerequisites (dependencies)
console.o: console.c defs.h command.h
# commands
cc -c console.c
means
If the modification time of one or more of
console.c defs.h command.h
is newer than the one of console.o, execute

cc -c console.c
to update console.o



Dependencies

» According to the rules, Make constructs a dependency graph
» This graph needs to be acyclic (DAG)
» In our example:

edit —— console.o — console.c

\ >2mmand .h
defs.h
/

kbd. o
T imd.c

» When processing the Makefile Make traverses the graph from
leaves to root

» If the modification date of a child is newer than the node’s, the node
needs to be redone



Make

Basics
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Basic syntax

tgtl tgt2 ... : preql preq2
cmd1
cmd?2
Ingredients:
> Targets: tgtl, tgt2, ...
> Prerequisites: preql, preq2, ...
» Commands: cmd1, cmd?2, ...
tgtl, tgt2, ..., preql, preq2, ... are files
tgtl, tgt2, ... are dependent on preql, preq2, ...
Executing cmd1, cmd?2 produces tgt2, ..., from preqi, ...
Attention:

> commands must be preceded by a tab
> Otherwise: *** missing separator. Stop.

~



Variables

» For example, some C project:

edit : kbd.o console.o
cc -o edit kbd.o comnsole.o
kbd.o : kbd.c defs.h command.h
cc -c kbd.c

console.o : console.c defs.h command.h
cc -c console.c
clean

rm -f kbd.o console.o edit

> Variables simplify your life:

objects = kbd.o console.o

edit : $(objects)
cc -o $@ $(objects)

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

console.o : console.c defs.h command.h
cc -c console.c
clean

rm -f $(objects) edit

> $@ name of target(s) in rule



Variables

> Variables are evaluated lazily

» If variable is never used, right side is not evaluated
= take care of side effects (use :=)

» What does this print?
foo = $(bar)

bar = $(ugh)
ugh = Huh?

all:
echo $(foo)

» If you want expansion at definition point, use :=

ugh := Huh?
bar := $(ugh)
foo := $(bar)
all:

echo $(foo)

» Add to a list with +=

files += a.c b.c

> Set variable only when not yet set: 7=



Implicit Rules
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Life is even simpler:

objects = kbd.o console.o
edit : $(objects)
cc -o edit $(objects)

kbd.o : defs.h command.h
console.o : defs.h command.h

clean
rm edit $(objects)

» Make has a database of implicit rules
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It knows how to make a .o file from a .c file:
h.o : h.c

$(CC) $(CFLAGS) $(CPPFLAGS) -c $<
$< name of first prerequisite in rule
$(CC) name of C compiler on the system
$ (CPPFLAGS) flags to give the C preprocessor
$ (CFLAGS) flags to give the C compiler



Implicit Rules

» You can (re-)define them yourself:

# Compile a LaTeX file
%.pdf : %.tex
pdflatex $<

# Convert png to jpeg
%.jpg : 'h.png
pngtopnm $< | pnmtojpeg > $@
» For C projects, you do not need to redefine implicit rules
» But you might want to set the variables $ (CFLAGS), ...

» Example:
cC = 166 # use intel C compiler
CFLAGS = -03 # activate all optimizations

CPPFLAGS += -I/usr/local/include # add to include path



Automatically Computed Prerequisites

Since GCC parses all the C files ...
. it can also compute the dependencies automatically

Use switch -M instead of —c to emit Make rules from .c files
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For example:

/* kbd.c */
#include "defs.h"
#include "command.h"

/* ... %/
and

shell$ gcc -M kbd.c
kbd.o: kbd.c defs.h command.h



Automatically Computed Prerequisites

Practice

» Define implicit rule to create a .d file from a .c file

%.d : h.c
$(CC) -M $< > g0

» After first target, include all .d files
(variables come in handy!)

ifeq ($(findstring $(MAKECMDGOALS), clean),)
-include $(objects:.o=.d)
endif

$(a:x=y) substitutes suffix x by y in every word in list a
ifdef avoids creating dependencies when only cleaning

- in front of command suppresses warnings

include creates dependency! = causes .d files to be created
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» Dependencies are updated automatically!
Homework: Why?



Our example now

kbd.o console.o
$(objects:.o=.d)

objects
depends

.PHONY: clean

edit : $(objects)
cc -o $@ $(objects)

ifeq ($(findstring $(MAKECMDGOALS), clean),)
-include $(depends)
endif

%h-d : h.c
$(CC) -M $< > $e

clean
rm -f $(objects) edit

» clean is no file!

» To avoid confusion with potentially existing files declare as phony



Make

Tips & Tricks

» It is not bad to put configuration settings to be provided by the user
into a separate file

Makefile config.mak
000 NDEBUG =1
include config.mak MY_CFLAGS =

MY_CPPFLAGS

oo -I$ (HOME)/include
# Adapt C flags for

# debug/optimized build
ifdef NDEBUG

CFLAGS += -03 -DNDEBUG
else

CFLAGS += -00 -g

endif

CFLAGS += $(MY_CFLAGS)
CPPFLAGS += $(MY_CPPFLAGS)
edit : $(objects)

» For all the details, see GNU Make manual



Make

Tips & Tricks 2

» Put generated files (.o, .d, final binary) into separate directory

» Requires more Make and compiler flag magic

builddir = build

sources = kbd.c console.c

objects = $(addprefix $(builddir)/,$(sources:.c=.0))
deps = $(objects:.o0=.d)

$(builddir)/%.o : %.c
$(CC) $(CFLAGS) $(CPPFLAGS) -o $@ -c $<

$(builddir)/%.d : %.c
$(CC) $(CFLAGS) $(CPPFLAGS) -MT $(@:.d=.0) -M $< > $0

= generated files do not pollute your source directory



Make

Tips & Tricks 3

» For nicer output, use Linux kernel style pretty printing

Q 7= @

$(builddir)/%.d : %.c

@echo "===>_DEPEND_ $@"

$(Q)$(CcC) $(CFLAGS) $(CPPFLAGS)
$(builddir)/%.o : %.c

@echo "===> ,COMPILE $@"

$(Q)$(CC) $(CFLAGS) $(CPPFLAGS) -c $<

> @ at the beginning of the line does not print the command
» See full output with

shell$ make Q=



Make

Tips & Tricks 4 — General Remarks

1. Provide target all that build everything

Make it the first (default) target
2. Use make -j N to build simultaneously on N CPUs
3. Never call Make recursively in subdirectories

> Instead, use includes
» Calling make recursive disrupts automated dependency tracking
> Parallelization not possible!

4. The Quick Reference in the GNU Make Manual is very good!



GDB
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Compile program with debug support:
> Debug symbols: -g
> No optimizations: -00

Why?

Debug symbols tell the debugger

Which objects are where (functions, global variables)
layout of stack frames

layout of structs

types, names, and so on
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Optimizations alter the program to strongly by
> function inlining
> loop unrolling
> if-conversion
> code re-ordered
1 hard to establish relation between source and binary

Using -00 everything remains as in the source



Breakpoints

» Tell the debugger when to stop the execution
(gdb) b myfunc
stops execution each time myfunc is entered
» Can also give filename:lineno
» Can be dependent on condition
(gdb) b myfunc if x > 5
(gdb) b file.c:55 if node->id==4711

> Beware of side effects in expressions!



Watchpoints
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A breakpoint on data

(gdb) watch a

(gdb) watch *p

» gdb stops whenever watched expression changes

» Program execution might be slow = conditions checked on each
instruction

» Some architectures have hardware support for signalling changing
memory contents
i debug registers



Commands

Controlling Execution
» continue run till next breakpoint

> step goes to next line of source code
will enter functions

> next goes to next line of source code
will step over functions

» use abbreviations: cont, s, and n

Inspecting the stack
> backtrace (bt) shows active stack frames
» frame N switches to given stack frame

» info locals gives values for local variables in current frame



Viewing Data

» Use print (p) to view value of expression
» Use x to inspect contents of memory
> Use display to show contents at each prompt

print somevar

X &somevar

x/t &somevar # binary
display /x somevar # hex format

» /x is a format
» Some Formats:
> x hex
> t binary

> f float
> a address

> s string
>



Macros

» GDB has a powerful macro language

» Define macros to be laoded at start in .gdbinit

Some examples:

1. Execute to a certain program location and show instruction at
program counter

define g

tbreak $arg0
continue

x/1i $pc

QRhE =s==oo====o \n
end

2. Custom print routines

define vec
call printf ("[%f, %f, %f, %fl\n",

$arg0 [0], $arg0[1], $argl2], $argl3])
end



How does it work?
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At breakpoints, gdb changes the machine code
Inserts code that causes a trap

On x86, there is a special instruction called int3
You can use that yourself

Suppose you have some events where it is too cumbersome to
specify breakpoints, call

int do_breakpoints = 0; /* e.g. set by command line */

#if defined (__GNUC__)
&& (defined(__i386__) || defined(__x86_64))
extern void enter_debugger (void) {
if (do_breakpoints)

__asm__ __volatile__("int3");
}
#else
extern void enter_debugger (void) { }
#endif



	Debugging

