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1 Introduction

Some modern machines have no integer multiply instruction and must rely on expensive software methods to
compute integer products. In other cases, the multiply instruction is significantly slower than simple integer
addition. When faced with computing n x ¢, where n is some unknown integer value and ¢ is a known integer
constant, we can avoid the need for a general-purpose multiply by rewriting the expression in terms of shifts,
adds, and subtracts — typically all one-cycle instructions.

Bernstein gives a detailed discussion of the problem and presents a solution, including Ada code for its
implementation [1]. Unfortunately, the code is flawed, at least in part due to typesetting errors. It’s also
quite difficult to understand.

This document represents an attempt to explain the elements of Bernstein’s approach. At the same time,
we will develop a complete, working, and hopefully understandable implementation of his approach.

2 Finding Solutions

We don’t know of an efficient algorithm that finds optimal sequences of shifts, adds, and subtracts to
accomplish multiplication (nor do we know of a proof of the problem’s complexity). Bernstein describes two
heuristic approaches: the binary method and the factoring method. Neither finds optimal solutions for every
case and neither dominates the other; therefore, Bernstein suggests a combination of the two methods.

2.1 The Binary Method

One way to compute n X ¢ 1s to examine the binary representation of the constant ¢. Each of the 1 bits
implies a shift and add (actually, all but one of the bits). For example, to compute n x 113, we observe that
11319 = 11100015 giving the sequence

2n «— n<Kl
3n — 2n+n
6bn — 3dInkl1
m «— 6n4+n
112n «— Tn<K€4
113n — 112n+n

Basically, we can simply look at the bits from left to right and dictate the answer.
We can get better solutions by using subtract to handle runs of 1 bits. For example, the previous case
could be handled by the sequence

8n — nK3

m «— 8n—n
112n «— Tn<K€4
113n — 112n+n

While it’s possible to give code that directly generates solutions using the binary method, we will wait
and give a more general method capable of handling the binary method in combination with the factoring
method.



2.2 Factoring

Sometimes we can factor the constant multiplier and achieve shorter instruction sequences. Consider the
case of n x 585. Since 58519 = 10010010015, using the binary method would yield

8n — n<K3
9n — 8n+n
2n — 9n <3
73n — T2n+n
584n — T3In <3
585n «— bH84n+n
However, if we recognize that 585 = 9 x 65, we can first generate 9n, then 65 x 9n, requiring only four
operations.
8n — n<K3
9n — 8n+n
876n — In K6
583n — H76n+ 9In

Of course, not all factors can be generated quickly. Bernstein suggests searching for factors of the form 2¢ £ 1
since they can be generated in only two instructions.

3 Searching for Solutions

The choice between the different methods for handling a particular positive constant can resolved by evalu-
ating the formula

Cost(l) = 0 (1)
Cost(even ¢) = Cost(makeOdd(c)) + shiftCost (2)
Cost(odd ¢) = min(Cost(c 4+ 1) + subCost, (3)
Cost(c — 1) 4+ addCost, 4)

Cost(c/(2" + 1)) + subCost + shiftCost, (5)

Cost(c/(28 = 1)) + addCost + shiftCost) (6)

where we make several assumptions:

e The function makeOdd(c) returns the odd number m such that m x 2! = ¢; that is, ¢ is right shifted
until 1t becomes odd.

e We assume that a left shift can shift an arbitrary amount in constant time.

e Line 5 is evaluated for every value of i such that ¢/(2! 4 1) is an integral value. The same assumption

applies to line 6.



Extending the formula to handle both positive and negative constants gives

Cost(l) = 0
Cost(—=1) = mnegateCost
Cost(even ¢) = Cost(makeOdd(c)) + shiftCost
Cost(odd ¢ > 1) = min(Cost(c+ 1) + subCost,

Cost(c — 1) 4 addCost,

(
Cost(c/(2" + 1)) + subCost + shiftCost,
Cost(c/(28 = 1)) + addCost + shiftCost)
Cost(odd ¢ < =1) = min(Cost(c + 1) + subCost,
Cost(1 — ¢) 4+ subCost,
(

Cost(c/(2" + 1)) + subCost + shiftCost,
Cost(c/(1 —2%)) + addCost + shiftCost)

Note that we are assuming a two’s-complement representation for negative numbers.

Of course, a nice formula is not working code. In the next sections, we develop an efficient implementation
of the search implied by the above formula. In the meantime, we give the initial boilerplate for "multiply.c".
"multiply.c" 3a =

(Include files 3b)

(Constant definitions 5a, ... )
(Type definitions 7a, ... >
(Variable definitions 7b, ... )
(Functlon definitions 3c, ... )

We only need one include file for 1/0.

(Include files 3b) =
#include <stdio.h>
<&

Macro referenced in scrap 3a.

We define a pair of simple helper functions — predicates to test whether a number is odd or even.

(Function definitions 3c) =
#tdefine odd(c) ((c) & 1)
#tdefine even(c) ('odd(c))
O

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.

We assert that make0dd is always invoked with a non-zero, even argument. The implementation is fairly
simple; however, note that ¢/2 cannot be replaced by ¢>>1 since right shift of negative integers is not
guaranteed to preserve the sign bit in ANSI C. This is very sad, but the code can be easily customized for
any particular machine/compiler combination with the correct behavior.

(Function definitions 3d) =
static int makeOdd(int c)
{
do
c=c/ 2;
while (even(c));
return c;

}
&

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.



3.1 Exploring the Search Space

For a first cut, we’ll simply give the code that explores the search space for an odd constant. It doesn’t
actually return any result, so it’s not very interesting except to show the planned form of the eventual code.
Of course, we recognize this code is terribly slow and wasteful; it’ll be refined in later sections.

(A first cut 4a) =
static void explore(int c)
{
if (¢ > 1) {
(Try factors for the positive case 4b)
explore (makeOdd(c - 1));
explore(makeOdd(c + 1));
}
else if (¢ < -1) {
(Try factors for the negative case 4c)
explore (make0dd(1 - c));
explore(makeOdd(c + 1));
}
}
&

Macro never referenced.

The code above handles the binary method. To explore different factorings, we include these fragments. By
starting at 4 (i.e., 2%), we initally try factors of 3 and 5, then 7 and 9, etc.

(Try factors for the positive case 4b) =
{
int power = 4;
int edge = n >> 1;
while (power < edge) {
if (¢ % (power - 1) == 0) explore(c / (power - 1));
if (¢ % (power + 1) == 0) explore(c / (power + 1));
power = power << 1;
}
3o

Macro referenced in scrap 4a.

The negative case is nearly identical. Note that the expression —c¢ will never overflow since ¢ is guaranteed

to be odd.

(Try factors for the negative case 4c) =
{
int power = 4;
int edge = (-¢) >> 1;
while (power < edge) {
if (¢ % (1 - power) == 0) explore(c / (1 - power));
if (¢ % (power + 1) == 0) explore(c / (power + 1));
power = power << 1;
}
3o

Macro referenced in scrap 4a.



3.2 Determining Costs

For a second cut, we’ll determine the cost of handling a particular constant. We’ll need to define the
machine-dependent costs for the various desired operations.

(Constant definitions 5a) =
#define ADD_COST 1
#define SUB_COST 1
#define NEG_COST 1
#define SHIFT_COST 1
(&

Macro defined by scraps 5a, 10b.
Macro referenced in scrap 3a.

(A second cut 5b) =
static unsigned int find_cost(int ¢)
{
if (c == 1)
return 0;
else if (c > 1)
(Explore the positive case 5c, ... )
else if (c == -1)
return NEG_COST;
else
(Explore the negative case 6c)

}
&

Macro defined by scraps 5b, 6a.
Macro never referenced.

Basically, we explore each of the options for generating n, comparing costs and keeping the cheapest alter-
native.

(Explore the positive case 5c) =
{
unsigned int cost;
unsigned int best_cost = 10000; /* i.e., a big number! */
int power = 4;
int edge = ¢ >> 1;
while (power < edge) {
if (¢ % (power - 1) == 0) {
cost = find_cost(c / (power - 1)) + SHIFT_COST + ADD_COST;
if (cost < best_cost) best_cost = cost;
3
if (¢ % (power + 1) == 0) {
cost = find_cost(c / (power + 1)) + SHIFT_COST + SUB_COST;
if (cost < best_cost) best_cost = cost;
3
power = power << 1;
3
cost = find_cost(make0dd(c - 1)) + SHIFT_COST + ADD_COST;
if (cost < best_cost) best_cost = cost;
cost = find_cost(make0dd(c + 1)) + SHIFT_COST + SUB_COST;
if (cost < best_cost) best_cost = cost;
return best_cost;
3o

Macro defined by scraps 5c, 6b.
Macro referenced in scrap 5b.

The negative case would be similar, though we don’t give it explicitly.



3.2.1 Introducing a Helper Routine

An alternative approach relies on a small helper procedure called try that encapsulates the invocation of
find_cost and the test for minimal cost.

Of course, we pay some cost in clarity since we now have a pair of mutually recursive routines. Hopefully
the incremental presentation will overcome any doubts about the correctness (combined with the obvious
waste of the original alternative). In later versions, we expect that try will become a more significant routine.

(A second cut 6a) =

static void try(int factor, unsigned int cost, unsigned int *best_cost)
{

cost += find_cost(factor);

if (cost < *best_cost)

*besgt_cost = cost;

¥
O

Macro defined by scraps 5b, 6a.
Macro never referenced.

The new code for exploring the various alternatives is given here.

(Explore the positive case 6b) =
{
unsigned int best_cost = 10000;
int power = 4;
int edge = ¢ >> 1;
while (power < edge) {
if (¢ % (power - 1) == 0)
try(c / (power - 1), SHIFT_COST + ADD_COST, &best_cost);
if (¢ % (power + 1) == 0)
try(c / (power + 1), SHIFT_COST + SUB_COST, &best_cost);
power = power << 1;
3
try(makeO0dd(c - 1), SHIFT_COST + ADD_COST, &best_cost);
try(makeO0dd(c + 1), SHIFT_COST + SUB_COST, &best_cost);
return best_cost;
3o

Macro defined by scraps 5c, 6b.
Macro referenced in scrap 5b.

The negative case corresponds closely with the positive case.

(Explore the negative case 6c) =
{
unsigned int best_cost = 10000;
int power = 4;
int edge = (-¢) >> 1;
while (power < edge) {
if (¢ % (power - 1) == 0)
try(c / (1 - power), SHIFT_COST + SUB_COST, &best_cost);
if (¢ % (power + 1) == 0)
try(c / (power + 1), SHIFT_COST + SUB_COST, &best_cost);
power = power << 1;
3
try(make0dd(1 - ¢), SHIFT_COST + SUB_COST, &best_cost);
try(makeO0dd(c + 1), SHIFT_COST + SUB_COST, &best_cost);
return best_cost;

3o

Macro referenced in scrap 5b.



3.3 Recording Results

Since we are interested in actually converting mutiplies to simpler instructions, not just finding the cost of
such a conversion, we need to record the results of each branch of our search. A tree representation seems
natural. First, however, we need names for the alternative approaches at each node.

(Type definitions 7a) =

typedef
enum {
IDENTITY, /* used for n = 1 */
NEGATE, /* used for n = -1 */
SHIFT_ADD, /* used for makeOdd(n - 1) */
SHIFT_SUB, /* used for makeOdd(n + 1) */
SHIFT_REV, /* used for make0dd(1 - n) */
FACTOR_ADD, /* used for n/(2°1 - 1) */
FACTOR_SUB, /* used for n/(2°1i + 1) */
FACTOR_REV /* used for n/(1 - 2°1) */
} MulOp;
O

Macro defined by scraps Tac.
Macro referenced in scrap 3a.

As a notational convenience (and to help avoid typos), we introduce a table holding the costs of each possible
MulOp.

(Variable definitions 7b) =
static unsigned int costs[] =

{o, /* for IDENTITY =%/
NEG_COST, /* for NEGATE */
SHIFT_COST + ADD_COST, /* for SHIFT_ADD #*/
SHIFT_COST + SUB_COST, /* for SHIFT_SUB #*/
SHIFT_COST + SUB_COST, /* for SHIFT_REV %/
SHIFT_COST + ADD_COST, /* for FACTOR_ADD #*/
SHIFT_COST + SUB_COST, /* for FACTOR_SUB #/
SHIFT_COST + SUB_COST /* for FACTOR_REV #/

};

&

Macro defined by scraps 7b, 10c.
Macro referenced in scrap 3a.

The initial definition of a tree node is given here; we’ll add a few extra fields later. The value field will
record the target factor. Initially, parent will be NULL, indicating that the cost field has not been initialized.
After one or more alternative derivations have been explored, the cost field will indicate the cost of the
best (cheapest) alternative to date, where the opcode and parent fields will indicate the next step in the
derivation.

(Type definitions 7c) =
typedef
struct node {
struct node *parent;
int value;
unsigned int cost;
MulOp opcode;
(Other fields in Node 10a)
} Node;
<&

Macro defined by scraps Tac.
Macro referenced in scrap 3a.



We’ll modify our search routine to return a pointer into the tree. By tracing back along parent pointers,

we’ll eventually reach the “one” entry. Reversing the order will give the sequence of desired operations (see
Section 4).

(A third cut 8a) =
static Node #find_sequence(int c)
{
Node *node;
(Create and initialize node 8b, ... )
if (c == 1)
(Handle the identity case 8c)
else if (c > 1)
(Handle the positive case 9a)

else if (c == -1)
(Handle the negate case 8d)
else

(Handle the negative case 9b)
return node;
}
&

Macro defined by scraps 8a, 9c.
Macro never referenced.

(Create and initialize node 8b) =
node = (Node *) malloc(sizeof (Node));
node->value = c;
node->parent = NULL;
<&

Macro defined by scraps 8b, 12c.
Macro referenced in scraps 8a, 10e.

We'll give the simplest cases first, just to set the stage.

(Handle the identity case 8c) =
{
node->cost = 0;
node->opcode = IDENTITY;
o

Macro referenced in scrap 8a.

(Handle the negate case 8d) =
{

node->opcode

NEGATE;
node->parent = find_sequence(1);
node->cost = node->parent->cost + NEG_COST;
3o

Macro referenced in scrap 8a.



The other cases change only slightly in that they pass different arguments to try.

(Handle the positive case 9a) =
{
int power = 4;
int edge = ¢ >> 1;
while (power < edge) {
if (¢ % (power - 1) == 0) try(c / (power - 1), node, FACTOR_SUB);
if (¢ % (power + 1) == 0) try(c / (power + 1), node, FACTOR_ADD);
power = power << 1;
}
try(makeO0dd(c - 1), node, SHIFT_ADD);
try(makeO0dd(c + 1), node, SHIFT_SUB);
3o

Macro referenced in scraps 8a, 11, 12a.

(Handle the negative case 9b) =
{
int power = 4;
int edge = (-¢) >> 1;
while (power < edge) {
if (¢ % (1 - power) == 0) try(c / (1 - power), node, FACTOR_REV);
if (¢ % (power + 1) == 0) try(c / (power + 1), node, FACTOR_ADD);
power = power << 1;
}
try(make0dd(1 - ¢), node, SHIFT_REV);
try(makeO0dd(c + 1), node, SHIFT_SUB);
3o

Macro referenced in scraps 8a, 11, 12a.

We need a slightly fancier version of try that will record the best cost and derivation.

(A third cut 9¢) =
static void try(int factor, Node *node, MulOp opcode)
{
unsigned int cost = costs[opcodel;
Node *factor_node = find_sequence(factor);
if ('node->parent || factor_node->cost + cost < node->cost) {
node->cost = factor_node->cosgst + cost;
node->parent = factor_node;
node->opcode = opcode;
3
3
<&

Macro defined by scraps 8a, 9c.
Macro never referenced.



3.4 Avoiding Redundant Searches

Up to this point, all our examples have involved enormously wasteful searches. In this section, we rewrite
find_sequence as a “memo function” that records the results of all its intermediate invocations in a hash
table. We store only odd numbers in the table since even numbers are always shifted immediately to
become odd. In contrast to Bernstein, we also store negative numbers. This occasionally saves us a cycle.
For example, Bernstein’s approach to negative numbers would require 3 cycles for —3; ours requires only
2 cycles.

We’ll use a form of overflow chaining to resolve collisions; therefore, we need to add a field to our definition
of Node. The next field will always point to the next node in the same hash bucket.

(Other fields in Node 10a) =
struct node *next;<

Macro referenced in scrap 7c.

We'll use a simple modulo function to compute our hash. We define the size of the table to be fairly large,
though it could probably be much smaller for most cases. Since we keep only odd numbers in the hash table,
we must make sure that HASH_SIZE is odd; otherwise, half the slots will be wasted.

(Constant definitions 10b) =
#define HASH_SIZE 511
&

Macro defined by scraps 5a, 10b.
Macro referenced in scrap 3a.

Buckets in the table are simply pointers to nodes. Since each Node has a slot to hold a hash-collision chain,
each pointer is basically to a list of nodes with the same hash value.

(Variable definitions 10c) =
static Node *hash_table[HASH_SIZE];
O

Macro defined by scraps 7b, 10c.
Macro referenced in scrap 3a.

The routine lookup looks for a node containing the value n in the hash table. If found, the node is returned.
If not found, an appropriate node is created, initialized, added to the hash table, and returned.

(Function definitions 10d) =
static Node #lookup(int c)
{
int hash = abs(c) % HASH_SIZE;
Node #*node = hash_table[hash];

while (node && node->value !'= c)
node = node->next;
if ('node)

(Create a new Node and add it to hash_table[hash] 10e)
return node;
3
&

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.

(Create a new Node and add it to hash_table[hash] 10e) =
{
(Create and initialize node 8b, ... )
node->next = hash_table[hash];
hash_table[hash] = node;
3o

Macro referenced in scrap 10d.

10



For the newest version of find_sequence, we get the appropriate node from the hash table, checking to see
whether it’s already been explored. If so, we simply return; otherwise, we explore the alternatives as usual.
We’ll assume that nodes for 1 and —1 have elready been initialized and added to the hash table.

(A fourth cut 11) =
static Node #find_sequence(int c)
{
Node #node = lookup(c);
if ('node->parent) {
if (¢ > 0)
(Handle the positive case 9a)
else
(Handle the negative case 9b)
}
return node;

}
&

Macro never referenced.

3.5 Pruning the Search

Sometimes, deep in a search, it becomes clear that we’re pursuing a fruitless path. At that point, we’d like
to abandon this particular line of exploration and consider other alternatives. By passing a 1imit parameter
to each invocation of find_sequence, we can avoid searching too deeply in useless directions. The idea is
quite similar to using alpha-beta cutoff to prune game search trees.

The 1imit parameter will specify how deep we’re willing to search, where “depth” is in terms of the
cycle-time costs of the target machine’s operations. As we consider each alternative to handling a particular
factor, we’ll pass along the best known result as 1imit. Essentially, 1imit specifies the time to beat.

We’ll assert, for a node n, that multiplication by n->value cannot be accomplished in less than n->cost
cycles (more precisely, our approach will never find a shorter sequence). We’ll further assert that if n->parent
has been set, then n->cost will accurately reflect the cost of multiplying by n->value. On the other hand,
if n->parent is still NULL, then we may or may not be able to multiply by n->value in n->cost cycles.

When we come across a node for the first time, we initialize it with a low cost that we know cannot
be beat (for odd numbers greater than one, we can be sure they will cost more than a shift). We then
explore the possiblities of generating it within 1imit cycles. If unsuccessful, the node’s cost will be set to
limit. Later searches may further raise the cost of the node, provided they are initiated with larger limits.
Eventually, the cost may be raised to the point that a successful search is carried out. At this point, parent
1s set to point to the correct alternative.

Imagine we invoke find_sequence with arguments ¢ = 101 and limit = 4. The first time we look at
the node for 101, its cost is initialized to 2 cycles, meaning we can’t hope to synthesize it in less than 2 cycles.
Since its cost is less than 1imit and we haven’t proven that its cost is accurate (i.e., parent is not set), we
explore ways to generate 101. Since a possiblity must beat 1imit to be interesting, we set cost to 4. After
considering all the alternatives, cost will remain equal to 4, since there is no way to generate a multiply
by 101 in less than 4 cycles. Thus, later searches with limits of 4 or less will be terminated immediately.
Searches with larger limits (at least 7) will eventually discover that a multiply by 101 can be accomplished
in 6 cycles.

11



(The final version of find_sequence 12a) =
static Node *find_sequence(int c, unsigned int limit)
{
Node #node = lookup(c);
if ('node->parent && node->cost < limit) {
node->cost = limit;
if (c > 0)
(Handle the positive case 9a)
else
(Handle the negative case 9b)
3
return node;
3
O

Macro referenced in scrap 15b.

The routine try explores one alternative. If that alternative can be generated cheaply enough, then it is
recorded in node as the new best case.

(The final version of try 12b) =
static void try(int factor, Node *node, MulOp opcode)
{
unsigned int cost = costs[opcodel;
unsigned int limit = node->cost - cost;
Node #factor_node = find_sequence(factor, limit);
if (factor_node->parent && factor_node->cost < limit) {
node->parent = factor_node;
node->opcode = opcode;
node->cost = factor_node->cosgst + cost;
}
}
<

Macro referenced in scrap 15b.

While creating a node, we set cost to more than SHIFT_COST since no odd value greater than 1 can be
handled in a single shift; they all require at least two operations.

(Create and initialize node 12¢c) =
node->cost = SHIFT_COST + 1;
&

Macro defined by scraps 8b, 12c.
Macro referenced in scraps 8a, 10e.

12



4 Emitting Code

For testing purposes (and for fun), we define “code” emission routines that write a human-readable code
sequence directly to stdout. In a real application, these would presumably be replaced by routines that
inserted instructions into the control-flow graph. Nevertheless, the current version is still useful as an example
of the required structure.

First, we need a routine that will emit a left-shift instruction, shifting source left until it equals target.

(Function definitions 13a) =
static void emit_shift(int target, int source)
{
int temp = source;
unsigned int i = 0;
do {
temp <<= 1;
it++;
} while (target !'= temp);
fprintf (stdout, "%d = %d << %d\n", target, source, i);
3
<&

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.

The main code generation routine is recursive. Invoked on node, it switches upon node->opcode. The
recursion is broken by the discovery of an IDENTITY node. Otherwise, emit_code is invoked recursively and
the correct code is emitted for each case.

(Function definitions 13b) =
static int emit_code(Node *node)
{
int source;
unsigned int shift;
int target = node->value;
switch (node->opcode) {
(Opcode cases 13c, ... )
}
return target;
}
<

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.

The IDENTITY case ends the recursion.

(Opcode cases 13c) =
case IDENTITY:
break;
<&

Macro defined by scraps 13cd, 14abcde, 15a.
Macro referenced in scrap 13b.

NEGATE should only arise for —1; however, we’ll handle it in a general fashion.

(Opcode cases 13d) =
case NEGATE:
source = emit_code(node->parent);
fprintf (stdout, "%d = 0 - %d\n", target, source);
break;
O

Macro defined by scraps 13cd, 14abcde, 15a.
Macro referenced in scrap 13b.

13



The SHIFT_ADD case illustrates the general form of the remaining cases. Here, we generate two instructions
that accomplish target = (source << n) + 1.

(Opcode cases 14a) =
case SHIFT_ADD:
source = emit_code(node->parent);
emit_shift(target-1, source);
fprintf (stdout, "%d = %d + 1\n", target, target-1);
break;
O

Macro defined by scraps 13cd, 14abcde, 15a.
Macro referenced in scrap 13b.

SHIFT_SUB produces target = (source << n) - 1.

(Opcode cases 14b) =
case SHIFT_SUB:
source = emit_code(node->parent);
emit_shift(target+l, source);
fprintf (stdout, "%d = %d - 1\n", target, target+1);
break;
O

Macro defined by scraps 13cd, 14abcde, 15a.
Macro referenced in scrap 13b.

SHIFT_REV produces target = 1 - (source << n). It’s typically produced when generating negative num-
bers (avoids the need for an additional negate instruction in many cases).

(Opcode cases 14c) =
case SHIFT_REV:
source = emit_code(node->parent);
emit_shift(l-target, source);
fprintf (stdout, "%d = 1 - %d\n", target, l-target);
break;
O

Macro defined by scraps 13cd, 14abcde, 15a.
Macro referenced in scrap 13b.

FACTOR_ADD produces target = (source << n) + source, effectively multiplying source by 2" + 1.

(Opcode cases 14d) =
case FACTOR_ADD:
source = emit_code(node->parent);
emit_shift(target-source, source);
fprintf (stdout, "%d = %d + %d\n", target, target-source, source);
break;
O

Macro defined by scraps 13cd, 14abcde, 15a.
Macro referenced in scrap 13b.

FACTOR_SUB produces target = (source << n) - source, effectively multiplying source by 2" — 1.

(Opcode cases 14e) =
case FACTOR_SUB:
source = emit_code(node->parent);
emit_shift(target+source, source);
fprintf (stdout, "%d = %d - %d\n", target, target+source, source);
break;
O

Macro defined by scraps 13cd, 14abcde, 15a.
Macro referenced in scrap 13b.
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FACTOR_REV produces target = source - (source << n), effectively multiplying source by 1 — 2".

(Opcode cases 15a) =
case FACTOR_REV:
source = emit_code(node->parent);
emit_shift(source-target, source);
fprintf (stdout, "%d = %d - %d\n", target, source, source-target);
break;
O

Macro defined by scraps 13cd, 14abcde, 15a.
Macro referenced in scrap 13b.

5 The Driver Routine

We finally nail down the actual functions, discarding all the early attempts. We also need a prototype for
find_sequence so that it can be referenced from try.

(Function definitions 15b) =
static Node *find_sequence(int c, unsigned int limit);
(The final version of try 12b)
(The final version of find_sequence 12a)
&

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.

We need a machine-dependent function to estimate the cost of performing an integer multiply using the
target machine’s multiply instruction (or software routine).

The function given here is for the Motorola 601. It should return 5 cycles for 16-bit numbers and 9 cycles
for larger numbers (my interpretation of the manual may be wrong — it should be verified). We might allow
an extra cycle or two in the larger case to allow for the cost of loading the number into a register.

(Function definitions 15¢) =
static unsigned int estimate_cost(int c)
{
if (c >= 0)
if (c >= 65536) return 9;
else return 5;
else if (c <= -65536) return 9;
else return 5;
3
<&

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.

Finally, in best bottom-up fashion, we define the multiply routine. Since this routine will eventually be
incorporated into our constant propagator, we can assert that multiply is never called with target equal
to 0.

(Function definitions 15d) =
void multiply(int target)
{
unsigned int multiply_cost = estimate_cost(target);
if (odd(target))
(Handle the (straightforward) odd case 16a)
else
(Handle the (relatively complex) even case 16b)

}
&

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.
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We call £ind_sequence and check to make sure the resulting sequence is cheap enough to beat a multiply
instruction.

(Handle the (straightforward) odd case 16a) =
{
Node *result = find_sequence(target, multiply_cost);
if (result->parent && result->cost < multiply_cost)
(void) emit_code(result);
else
fprintf (stdout, "use multiply instruction\n");

3o

Macro referenced in scrap 15d.

To handle even numbers, we immediately shift them until they are odd, then find the sequence computing
the odd multiplication. Therefore, we need to account for the cost of the final shift.

(Handle the (relatively complex) even case 16b) =
{
Node *result = find_sequence(makeOdd(target), multiply_cost - SHIFT_COST);
if (result->parent && result->cost + SHIFT_COST < multiply_cost) {
int source = emit_code(result);
emit_shift(target, source);
}
else
fprintf (stdout, "use multiply instruction\n");

3o

Macro referenced in scrap 15d.

6 Initialization

Before invoking multiply, the hash table must be created and initialized.

(Function definitions 16c) =
void init_multiply(void)
{
Node *node, *nodel;
unsigned int i;
for (i=0; i<HASH_SIZE; i++) hash_table[i] = NULL;

nodel = lookup(1);

nodel->parent = nodel; /* must not be NULL */
nodel->opcode = IDENTITY;

nodel->cogt = 0;

node = lookup(-1);
node->parent = nodel;
node->opcode = NEGATE;
node->cost = NEG_COST;
}
<&

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.
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7 A Dummy Main Routine

While this whole mess will eventually become part of our constant propagator, we’d like to play with it in
the meantime. Here’s a small main routine to support experimentation.

(Function definitions 17) =
void main()
{
int i;
init_multiply();
while (EOF != scanf("%d", &i))
if (i) multiply(di);
exit (0);
3
O

Macro defined by scraps 3cd, 10d, 13ab, 15bcd, 16¢, 17.
Macro referenced in scrap 3a.

8 Indices

We’ve defined indices for the scraps and certain useful identifiers.

8.1 Scraps

<A first cut 4a> Not referenced.

<A fourth cut 11> Not referenced.

<A second cut 5b, 6a> Not referenced.

<A third cut 8a, 9C> Not referenced.

<Constant definitions 5a, 10b> Referenced in scrap 3a.
(Create a new Node and add it to hash_table[hash] 10e) Referenced in scrap 10d.
<Create and initialize node 8b, 12C> Referenced in scraps 8a, 10e.
(Explore the negative case 6c) Referenced in scrap 5b.
(Explore the positive case 5c, 6b) Referenced in scrap 5b.
<Functi0n definitions 3cd, 10d, 13ab, 15bcd, 16c, 17> Referenced in scrap 3a.
(Handle the (relatively complex) even case 16b) Referenced in scrap 15d.
(Handle the (straightforward) odd case 16a) Referenced in scrap 15d.
<Handle the identity case 8C> Referenced in scrap 8a.
(Handle the negate case 8d) Referenced in scrap 8a.
<Handle the negative case 9b> Referenced in scraps 8a, 11, 12a.
<Handle the positive case 9a> Referenced in scraps 8a, 11, 12a.
<Include files 3b> Referenced in scrap 3a.

<Opc0de cases 13cd, 14abcde, 15a> Referenced in scrap 13b.

<Other fields in Node 10a> Referenced in scrap 7c.

(The final version of find_sequence 12a) Referenced in scrap 15b.
(The final version of try 12b) Referenced in scrap 15b.

(Try factors for the negative case 4c) Referenced in scrap 4a.

(Try factors for the positive case 4b) Referenced in scrap 4a.
<Type definitions 7ac> Referenced in scrap 3a.

<Variable definitions 7b, 10C> Referenced in scrap 3a.
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8.2 Identifiers
Underlined page numbers refer to definitions; other references are to uses.

ADD_COST: 5a, 5c¢, 6b, Tb.

costs: Tb, 9c, 12b.

emit_code: 13b, 13d, 14abcde, 15a, 16ab.
emit_shift: 13a, 14abcde, 15a, 16b.
EOF: 3b, 17.

estimate_cost: 15¢, 15d.

even: 3¢, 3d, 15d.

explore: 4a, 4bc.
FACTOR_ADD: 7a, 7b, 9ab, 14d.
FACTOR_REV: 7a, 7b, 9b, 15a.
FACTOR_SUB: 7a, 7b, 9a, 14e.
find_cost: 5b, 5¢, 6a.
find_sequence: 8a, 8d, 9¢, 11, 12a, 12b, 15b, 16ab.
fprintf: 3b, 13ad, 14abcde, 15a, 16ab.
HASH_SIZE: 10b, 10cd, 16c.
hash_table: 10c, 10de, 16c¢.

IDENTITY: 7a, 7b, 8c, 13c, 16c.
init_multiply: 16¢, 17.

lookup: 10d, 11, 12a, 16c.

main: 17.

make0dd: 3d, 4a, 5c, 6bc, 7a, 9ab, 16b.
MulOp: Ta, 7c, 9¢, 12b.

multiply: 15d, 16ab, 17.
NEGATE: 7a, 7b, 8d, 13d, 16c.
NEG_COST: 5a, 5b, 7b, 8d, 16c¢.

Node: 7c, 8ab, 9c, 10cd, 11, 12ab, 13b, 15b, 16abc.
odd: 3c, 15d.

scanf: 3b, 17.
SHIFT_ADD: 7a, 7b, 9a, 14a.
SHIFT_COST: 5a, 5¢, 6bc, Tb, 12¢, 16b.
SHIFT_REV: 7a, 7h, 9b, l4c.
SHIFT_SUB: 7a, Th, 9ab, 14b.

stdout: 3b, 13ad, 14abcde, 15a, 16ab.
SUB_COST: 5a, 5¢, 6bc, Tb.

try: 6a, 6bc, 9ab, 9¢, 12b, 15b.
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