Relative Completeness of Abstraction Refinement

Relative Completeness of Abstraction

Refinement for Software Model Checking
Thomas Ball , Andreas Podelski , Sriram K. Rajamani

Talk by: Rayna Dimitrova

9th June 2005

Relative Completeness of Abstraction Refinement

Outline

e Motivation

9 The Formal Setting

e Method I: Predicate Abstraction with Refinement
@ WMethod I1: Oracle-Guided Widening

e Relative Completeness for Backward Refinement
e Forward vs. Backward Refinement

Q Discussion and Summary

Relative Completeness of Abstraction Refinement
Motivation

Automatic Predicate Abstraction

Counterexample-Guided Abstraction Refinement

Source I
Program

No Bug

Bug

Relative Completeness of Abstraction Refinement
Motivation

Automatic Predicate Abstraction

Counterexample-Guided Abstraction Refinement

© Construct abstraction

e Finite set of predicates
@ Map concrete states to abstract states
@ Construct abstract transitions

@ Compute the set of reachable abstract states
o all reachable states satisfy the property = "Success"
e otherwise check counterexample against the original state
space
© The counterexample is real = "Bug"
© Spurious counter example =

e add new predicates to the set of predicates
e gotol

Relative Completeness of Abstraction Refinement
Motivation

Relative Completeness

Relative Completeness

@ Property checking for software is undecidable

@ Abstraction refinement is not complete
@ Goodness criterion

e comparison with a method for fixpoint iteration with
"oracle-guided" widening
e widening is used in fixpoint analysis
@ Abstraction refinement procedure with backward
refinement
o Satisfies the criterion

Relative Completeness of Abstraction Refinement
The Formal Setting

Programs

@ Program is a set of guarded commands
@ Guarded command
c=g(X)Ax] =e1(X)A ... AX, = em(X)
@ A program state is a valuation of X
@ Transitions — s’
e corresponding valuations of primed and unprimed variables

satisfy one of the guarded commands
@ Each command is deterministic
@ The program can be nondeterministic

Relative Completeness of Abstraction Refinement

The Formal Setting

An Example Program

C Program

L x = O;
L2: while(x >= 0){ variables X = {x,y,z,pc}
X =X + 1
} ci:pc=1l —pc:=l,x:=0
L3: ifly == 25){ Co:pC=hLAXxX>0—-x:=x+1
L4: if (y '= 25) C3:pc=IhbAXx<0—pc:=I3
L5: z = -1; Cs:pc=I3Ay=25—-pc:=l
L6: while(z!= 0){ Cs:pc=Il4Ay #25 —pc =15
z =1z -1 Co:pc =I5 —pc:=lg,z:=-1
} C7:pc=lgANZ#0—2z2:=2 -1
error:; Cg:pc=Ils Az =0 — pc := error
} .
}

Relative Completeness of Abstraction Refinement
The Formal Setting

Symbolic Representation of Sets Of States

@ Symbolic representation of set of states

o=\ N

ieljed;

@ Fixed infinite set of atomic formulas
@ Partial order on formulas ¢ < ¢’
© = ¢’ is provable by a given theorem prover
@ © = ¢'does not entail p < ¢’
@ Requirement to the theorem prover
o pNY =
° o=V

Relative Completeness of Abstraction Refinement
The Formal Setting

The Pre Operator

@ c - guarded
command

@ ¢ - formula
@ C - program

@ prec(p) = g(X) Apler(X),...em(X)/X1,. .., Xm]
© pre(p) = Veec Prec(yp)

Q@ cr:pc=lgAz#0—2z:=2—-1
@ p=2<5

Relative Completeness of Abstraction Refinement
The Formal Setting

The Pre Operator Contd.

@ p=pc=IlgAnz=0
@ pre(p)=(pc=lgANz#0Az2—-1=0)V(pc =I5 AN—-1=0)

Set of guarded commands

Ci:pc=Ilp —pc:=l,x:=0
Co:pc=LAX>0—-x:=x+1
Cz3:pc=bLbAX<0—pc:=I3
Cs:pc=I3ANy =25—pc:=l
Cs:pc=Il4Ay #£25 —>pc:=1Is
Cg:pc =I5 —pc:=lg,z:=-1
C7:pc=lANZz#0—-2:=2-1
Cg:pc =IlgAnz=0— pc:=error

Relative Completeness of Abstraction Refinement
The Formal Setting

The Post Operator

@ c - guarded »
command

@ ¢ - formula

@ C - program

@ poste(p) = (IX.p Ag(X) AX] =e1(X) A ... AXy =en(X))[X/X']
@ post(p) = Ve POStc(y)

Q@ c:pc=LbAX>0—-x:=x+1
@ p=pc=LAXx=0

Relative Completeness of Abstraction Refinement
The Formal Setting

The Post Operator Contd.

@ p=pc=l
@ post(p)=(pc =lb Ax >1) Vv (pc =I3Ax <0)

Set of guarded commands

Ci:pc=Ilp —pc:=l,x:=0
Co:pc=LAX>0—-x:=x+1
Cz3:pc=bLbAX<0—pc:=I3
Cs:pc=I3ANy =25—pc:=l
Cs:pc=Il4Ay #£25 —>pc:=1Is
Cg:pc =I5 —pc:=lg,z:=-1
C7:pc=lANZz#0—-2:=2-1
Cg:pc =IlgAnz=0— pc:=error

Relative Completeness of Abstraction Refinement

The Formal Setting

Correctness

@ init - initial states
nonlnit

@ safe - safe states Ifp(post,init)
unsafe

@ The program is correct if no unsafe state is reachable from
an initial state

Relative Completeness of Abstraction Refinement

The Formal Setting

Invariants

safe(forward) invariant v
@ init <
@ pos(y) <o

@ ¢ < safe

forward

invariant

backward invariant v
@ unsafe< ¢

@ pre(y) <7

@ ¢ < nonlnit

nonlnit

backward
invariant

Relative Completeness of Abstraction Refinement
The Formal Setting

Proving Correctness

@ (F, start, bound)-invariant
@ instantiated to (post, init, safe) - forward invariant
e instantiated to (pre, unsafe, nonlnit) - backward invariant
@ Domain of formulas
e Closed under application of F
e May not contain Ifp(F,start), but still contain a formula
denoting an (F, start, bound)-invariant
@ To prove correctness it suffices
e compute either a forward invariant
e or a backward invariant
@ Correctness condition: exists v
o start< ¢

o F(y) <v

e 1 < bound

Relative Completeness of Abstraction Refinement
The Formal Setting

Proving Correctness Contd.

@ lIteration of F may not terminate
@ Upper abstraction F/
o F(p) <F/(y) forall ¢
o Ifp(F’,start) can be computed
o Ifp(F/,start)< bound
@ Ifp(F/,start) is a (Fstart,bound)-invariant
@ Use

e predicate abstraction
e widening

Relative Completeness of Abstraction Refinement
Method I: Predicate Abstraction with Refinement

Abstraction

@ ¢ is mapped to an element of a finite lattice £(P)
° L(P)
e generated by a finite set of predicates P
e partial order C
@ Abstraction function: .
p +— the smallest (wrt C) element of the lattice ¢
such that ¢ < ¢’

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

The Lattice L(Py)

Finite free distributive lattice generated by the set of
predicates Py

@ Bottom element false

@ Top element true

@ Operators A and Vv

@ Partial order C

@ Contains start

@ Generally not closed under F

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

The Lattice £(P,) Contd.

@ Each element can be written in disjunctive normal form
Vier Ajes, i

@ Predicates are pairwise incomparable

@ Viai Ajes #ii E Viek Njey g TV € 13k € Ki{gy |1 € 3i} 2 {gj [€ K}

° (Xx<O)A(y=5)A(y #10))V((x <y)A(y #0))C
= 2X

(x<y)v(x<0)A(y =5)) V(Y
o (X<2)Z(x<3)

)

@ » C ¢ implies ¢ < ¢
@ NP Co
@ L pVy

Relative Completeness of Abstraction Refinement
Method I: Predicate Abstraction with Refinement

The Abstract Operator

@ F7# is the 'best’ abstraction of F with respect to £(P)

F¥=aoF oy

@ The meaning function ~ is the identity
@ « and ~ form a Galois connection

e guaranteed by requirement to the theorem prover
@ guarantees correctness of algorithm

Relative Completeness of Abstraction Refinement
Method I: Predicate Abstraction with Refinement

Galois Connection

@ Two partially ordered sets

e the infinite set of all formulas

with <

e L(P)with C
@ Two monotone functions

@ «

° v a
@ « and ~ satisfy the properties

o a(y(¥)) C v

o p < y(a(y))

@ ap) Cyiff o <~(v)

Relative Completeness of Abstraction Refinement
Method I: Predicate Abstraction with Refinement

Method |

Start with n=0 and repeat
@ construct F

@ iterate F to compute Ifp(F7 ,start)
o if pr(F#,start) < bound then stop with "Success"
© refine P, to obtain P, 1

Q n++

Relative Completeness of Abstraction Refinement
Method I: Predicate Abstraction with Refinement

Method |

Start with n=0 and repeat
@ construct F

Q iterate Fn# to compute pr(Fn#,start)
e if Ifp(F¥ start) < bound then stop with "Success"
© refine P, to obtain Py 1

O n++

pr(Fn#,start) is computed over a finite lattice =
computation is guaranteed to terminate

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Method |

Start with n=0 and repeat
@ construct

@ iterate F to compute Ifp(F7 ,start)
o if pr(F#,start) < bound then stop with "Success"
© refine P, to obtain P, 1

Q n++

pr(F#,start) is computed over a finite lattice =
computation is guaranteed to terminate

Terminates for some n =
Ifp(Fi start) is a (Fstart,bound) - invariant

Relative Completeness of Abstraction Refinement
Method I: Predicate Abstraction with Refinement

The Refinement Procedure

@ Refinement procedure generates
PoCP1C...CPnCPns1--.
e P, - finite set of predicates over states
e predicates identified with atomic formulas

@ L(Py) CL(Py) C...CL(P,) CL(Ppyq)---
@ ap is the abstraction function wrt £(P,,)
@ Increasing precision of o, for increasing n

Relative Completeness of Abstraction Refinement
Method I: Predicate Abstraction with Refinement

The Refinement Procedure Contd.

@ The algorithm procedure produces the sequence
@ o = start
® ¢ni1 = ¢nV Fen)

@ Pp=atoms(¢n)

@ Backward refinement

@ Forward refinement

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Abstract Fixpoint Iteration with Iterative Abstraction
Refinement

o = start
n:=0
loop

Pn := atoms(en)
construct abstract operator Fn# defined by P,
¥ = Ifp(FI start)
if (¢ < bound) then
STOP with "Success"
¢nt1 = ¢nV Fen)
n=n+1
endloop

Relative Completeness of Abstraction Refinement
Method I: Predicate Abstraction with Refinement

Example

@ (start, F, bound) := (unsafe, pre, noninit)
@ unsafe =pc = error

@ nonlinit =
pc=lLbvpc=Il3vpc=Ilsvpc=IsVpc=IgVpc=error

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Example

@ ¢ = unsafe = pc = error

@ Py = {pc = error}

e pre} (unsafe) = ag(pc = ls Az = 0)=true
° pr(preZ?E ,unsafe) = true

° pr(pre# ,unsafe) £ noninit

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Example

©1 = oV pre(po) = (pc = error) V (pc = lg Az = 0)
P1 = {pc = error,pc = lg,z = 0}
pref(unsafe) =aj(pc=lgAz=0)=pc=IgAz=0

pref(unsafe vpec =lgAz =0) =
al((pc =lgANzZ = O)\/
(pc=lgAz#0AZ=1)V
(pc =15 A —1=0)) =
(pc =lg Az =0)V (pc =lg)V true =
true

pr(pref,unsafe) = true

pr(pref,unsafe) £ nonlnit

Relative Completeness of Abstraction Refinement
Method I: Predicate Abstraction with Refinement

Example

o po=...
@ Terminates in four iterations

° pr(pref,unsafe) < nonlnit

@ Disjuncts with unsatisfiable conjuncts not removed

Relative Completeness of Abstraction Refinement
Method II: Oracle-Guided Widening

The Widen Operator

@ Applied to a formula in
disjunctive normal form
yields a formula in x20vy<z
disjunctive normal form

@ Drops out some
conjuncts from some
disjuncts

@ widen (y) is weaker than
p, i.e. it denotes a larger
set of states

@ p < widen(yp)

Relative Completeness of Abstraction Refinement
Method II: Oracle-Guided Widening

Overview

@ lteratively applies the concrete operator over formulas
@ At each iteration a widening operator is applied to the result

widen(o, v F(p,))

9

@ until pni1 < ¢n

@ ¢n < bound =
¢n Is a (F, start, bound)-invariant

Relative Completeness of Abstraction Refinement
Method II: Oracle-Guided Widening

The Oracle

@ Enumeration of widening operators: widen (0),widen (1),.. .

@ At each step an oracle gives us a natural number -
determines the widening operator to be applied

@ Each sequence of natural numbers determines a fixpoint
iteration sequence

Relative Completeness of Abstraction Refinement
Method II: Oracle-Guided Widening

Method Il

©p, old, n := start,false,0
loop
if (¢, < old) then
if (¢}, < bound) then
STOP with "Success"
else
STOP with "Don’t know"
else
old := ¢},
i ;= guess provided by oracle
Pny1 = Widen(i,opV Fen))
n=n+1
endloop

Relative Completeness of Abstraction Refinement
Method II: Oracle-Guided Widening

Example

@ (start, F, bound):=(unsafe, pre, noninit)
@ unsafe =pc = error

@ nonlinit =
pc=lLbvpc=Il3vpc=Ilsvpc=IsVpc=IgVpc=error

Relative Completeness of Abstraction Refinement
Method II: Oracle-Guided Widening

Example

w2 =

unsafe = (pc = error)

widen(eo V pre(o))=

widen((pc = error) vV (pc =lg Az = 0))=

(pc = error) V (pc = lg)

widen(p1 V pre(pr))=

widen((pc = error) vV (pc =1lg) V (pc =lg Az =0)
V(pc =1lg Az #0)V(pc =1s5))) =

(pc =error) vV (pc =lg) vV (pc = I5)

Relative Completeness of Abstraction Refinement
Method II: Oracle-Guided Widening

Example

p3 = widen(pz V pre(yz))=
widen((pc = error) V (pc =lg) V (pc = I5)V
(pc=1lgAz=0)V(pc=IlgAz #0)V
(pc =15) vV (pc = lg Ay # 25))) =
(pc =error) vV (pc =1lg) vV (pc = Is)Vv
(pc =l4 Ny # 25)

Relative Completeness of Abstraction Refinement
Method II: Oracle-Guided Widening

Example

P4 = widen(pz Vv pre(ps))=
widen((pc = error) V (pc = lg)V
(pc =15) V(pc =g Ay # 25)V
(pc =lgAz=0)V(pc =l Az #0)V
(pc =15) V (pc =4 Ay # 25)V
(pc =I3 Ay =25Ay # 25)) =
(pc =error) vV (pc =1lg) vV (pc = Is5)V
(pc =14 Ay # 25)V
(pc =13 Ny =25y # 25)

Relative Completeness of Abstraction Refinement
Method II: Oracle-Guided Widening

Example

@ 1 < 3
@ 4 < noninit
@ ¢4 is an (pre,unsafe,nonlinit) -invariant

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Relative Completeness of Abstract Backward

Iteration with Backward Refinement

If Method Il with (F,start,bound) := (pre,unsafe,noninit)
terminates with success, then

Method | with (Fstart,bound) := (pre,unsafe,noninit) also
terminates with success.

@ Method | generates
(start, pref (start), .. ., lfp(pref’ , start))n_1.5_..

@ All possible infinite branches arising from possible choices
of the widening operators

(start, widen(iy) o pre(start), ...), i,,..)enn

Relative Completeness of Abstraction Refinement
Relative Completeness for Backward Refinement

Relative Completeness of Abstract Backward
Iteration with Backward Refinement

The precision of the abstract operator F# is related to the
expressiveness of the set of predicates P it is induced by.

If the set of predicates P can express an
(Fstart,bound)-invariant ¢, then the least fixpoint of F#, the
best abstraction of F over £(P), is an (Fstart,bound)-invariant

as well.

We cannot expect a realistic abstraction refinement procedure
that generates such a set P whenever it exists.

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Forward Fixpoint Iteration

@ Relative completeness for forward fixpoint iteration with
backward refinement?

@ The key point is the backward direction of the refinement
@ Weakest precondition operator

pre(p) = —pre(—y)

@ s satisfies pre(yp) iff all successors of s satisfy ¢
@ Ifp(pre, safe) denotes the set of all states from which only
safe states are reachable
@ Dual backward refinement
@ o = safe
® ©ni1 = n Vv pre(en)

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Forward Fixpoint Iteration with Backward
Abstraction Refinement

@ abstract backward fixpoint iteration
with backward refinement
@ Py = atoms(unsafe)
@ Phi1 = PnU atoms(pre(en))
@ abstract forward fixpoint iteration
with dual backward refinement @ 1 - (pre,unsafe,noninit)
e Py = atoms(safe) -invariant
@ Pni1 = PpU atoms(—pre(en))

@ — - (post,init,safe)
-invariant

If b can be expressed over Py N
then —+) can be expressed over {—p | p € Pn}= Pn J

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Forward Fixpoint Iteration with Backward
Abstraction Refinement(Method III)

o = safe
n:=0
loop

Pn := atoms(en) N
construct abstract operator postn# defined by P,
¥ := Ifp(post? init)
if (¢ < safe) then
STOP with "Success"
Pnt1 = on V pre(en)
n=n+1
endloop

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Relative Completeness of Abstract Forward

Iteration with Backward Refinement

Theorem

If Method Il with (F, start, bound) := (pre, unsafe, nonlinit)
terminates with success, then
Method Ill also terminates with success.

@ ¢ - (pre, unsafe, nonlnit) -invariant computed by Method |l
@ 1 can be expressed over Py

@ — - (post, init, safe) -invariant, can be expressed over 73n

Ol

v

Relative Completeness of Abstraction Refinement

Forward vs. Backward Refinement

Example Program

The completeness of Method | relative to Method Il does not
hold for the forward case (F, start, bound) := (post, init, safe)

C Program

'—;: Xh:| 0; . Set of guarded commands
L2: [>=
W)ieixx . 1).{ variablesX = {x,y,z}
} ' ci:pc=Ily —pc:=l,x =0
L3: |f(y == 25){ Cz:pczlz/\XZOHXZ:X—f—l
L4: if (y I= 25){ Cg:pC:|2/\X<0—>pC Z:|3
L5: z = -1 Cs:pc=I3ANy =25—-pc:=l
L6: while(zl= O) EZ : Eg - :: A ypf _2_5|:Zp§_:=_ |15
=z -1 i pc = =lg,z 1=
}Z z cr:pc=lgAz#A0—z:=2-1
error:: Cg:pc=Ils Az =0 — pc := error
}
}

Relative Completeness of Abstraction Refinement
Forward vs. Backward Refinement

Method Il Forward

@ Iterative application of post and oracle-guided widening
@ Drops all conjuncts containing x

@ Does not get "stuck" in the nonterminating loop

@ Terminates with success

Relative Completeness of Abstraction Refinement
Forward vs. Backward Refinement

Method | with Forward Refinement

@ Does not terminate
@ Refinement gets "stuck" in the first nonterminating loop
exXx=0x=1,x=2...

Relative Completeness of Abstraction Refinement
Forward vs. Backward Refinement

Forward vs. Backward Refinement

@ Refinement must be based on the concrete execution
@ Forward

e the concrete execution of a guarded command is
deterministic

@ an abstract execution is in general nondeterministic

@ the concrete execution follows one branch and may get
stuck in a loop

@ Backward

e the concrete execution is nondeterministic

e the concrete execution reaches as many program points as
an abstract one

e pre must produce also unsatisfiable disjuncts

Relative Completeness of Abstraction Refinement

Discussion and Summary

BDD’s and the Free Lattice

@ Finite-state model checker
e implement abstract fixpoint iteration
e based on BDD’s
e Boolean variable for each predicate
e fixpoint termination test does not use logical meaning of
predicates
@ L strictly stronger than <
o [x<2]Z[x <3
@ The fixpoint test in Method | is strictly weaker than the one
of Method I

Relative Completeness of Abstraction Refinement

Discussion and Summary

Boolean Expressions

@ No need to add the negated versions of predicates to £(P)
@ More efficient construction of the abstract fixpoint operator

@ The lattice of Boolean expressions L(P | J{—¢ | ¢ € P}) is
an instance

@ In the setting of Boolean expressions Method Il iterates
pre starting with unsafe and adds the negation of the
predicates

Relative Completeness of Abstraction Refinement

Discussion and Summary

More Powerful Refinement

@ Backward refinement procedure also adds predicates that
occur in unsatisfiable conjuncts

@epc=IlsAnz'=—-1Apc' =1lg

@ atoms(prec(pc =lg Az =0)) =atoms(pc =I5 A —-1=0)=
{pC = |57 -1= 0}

Relative Completeness of Abstraction Refinement

Discussion and Summary

Widening vs. Predicate Abstraction

@ Two abstraction methods for verification
@ Widening is not complete relative to the predicate
abstraction with backward refinement
e dropping a conjunct less precise than
e replacing a conjunct with a formula over already generated
predicates
@ Their power depends on the given formalism
e atoms({x =0}) ={x <0,x >0}
e Method I with forward refinement will succeed on the
example

Relative Completeness of Abstraction Refinement

Discussion and Summary

Other Issues

@ Incorrect programs
@ Finite simulation or bisimulation quotient
@ Generating small sets of predicates

Relative Completeness of Abstraction Refinement

Discussion and Summary

Summary

@ Different refinement procedures can be evaluated not only
practically

@ Comparison with oracle-guided fixpoint iteration gives a
quality measure

@ Predicate abstraction with backward refinement is at least
as powerful as oracle-guided fixpoint iteration

Thank you!

Relative Completeness of Abstraction Refinement

Q
atoms(pre(\/ /\ ;) = | {atoms(prec (i) | i € 1,j € 31}

icljey; ceC

2]

@ ¢n -the formula at the beginning of n-th iteration of Method |
@ ¢, -the formula at the beginning of n-th iteration of Method II
@ atoms(en) 2 atoms(e},)

© o, - an (Fstart,bound)-invariant that can be expressed in atoms(¢},) C Pa.

Relative Completeness of Abstraction Refinement

atoms(pn) Datoms(ey,) J

@ n=0
@ o = start and ¢} = start

@ n+1

Pn+1 = @anre(QOn)

Ph+1 =Widen(envpre(py))

IH = atoms(pn) Datoms(y},)
atoms(pre(yn)) 2 atoms(pre(yp))
widen can only drop atomic formulas

Relative Completeness of Abstraction Refinement

Lemma

If the set of predicates P can express an (F,start,bound)-invariant +, then the least
fixpoint of F#, the best abstraction of F over £(P), is an (F,start,bound)-invariant as

well.

© Forallk: F# (start) < v

O F#’(start) = start <¢
@ FH#(F# (start) < F#(y) < v
o F#(y)-the least element in £(P) greater or equal to F(z))
° F(y)<v
@ 1 is an element of L(P)
Q Ifp(F# start) < ¢ < bound

@ Ifp(F#,start) is an (F,start,bound)-invariant

	Motivation
	Automatic Predicate Abstraction
	Relative Completeness

	The Formal Setting
	Method I: Predicate Abstraction with Refinement
	Method II: Oracle-Guided Widening
	Relative Completeness for Backward Refinement
	Forward vs. Backward Refinement
	Discussion and Summary

