
Relative Completeness of Abstraction Refinement

Relative Completeness of Abstraction
Refinement for Software Model Checking

Thomas Ball , Andreas Podelski , Sriram K. Rajamani

Talk by: Rayna Dimitrova

9th June 2005

Relative Completeness of Abstraction Refinement

Outline

1 Motivation

2 The Formal Setting

3 Method I: Predicate Abstraction with Refinement

4 Method II: Oracle-Guided Widening

5 Relative Completeness for Backward Refinement

6 Forward vs. Backward Refinement

7 Discussion and Summary

Relative Completeness of Abstraction Refinement

Motivation

Automatic Predicate Abstraction

Counterexample-Guided Abstraction Refinement

No Bug

Bug

Build
Abstract
Model

Pass

Fail

Real CE

Spurious
CE

Check
Model

Refinement
Predicates

Check
Counter-
example

Source
Program

Relative Completeness of Abstraction Refinement

Motivation

Automatic Predicate Abstraction

Counterexample-Guided Abstraction Refinement

1 Construct abstraction
Finite set of predicates
Map concrete states to abstract states
Construct abstract transitions

2 Compute the set of reachable abstract states
all reachable states satisfy the property ⇒ "Success"
otherwise check counterexample against the original state
space

3 The counterexample is real ⇒ "Bug"
4 Spurious counter example ⇒

add new predicates to the set of predicates
go to 1

Relative Completeness of Abstraction Refinement

Motivation

Relative Completeness

Relative Completeness

Property checking for software is undecidable

Abstraction refinement is not complete
Goodness criterion

comparison with a method for fixpoint iteration with
"oracle-guided" widening
widening is used in fixpoint analysis

Abstraction refinement procedure with backward
refinement

Satisfies the criterion

Relative Completeness of Abstraction Refinement

The Formal Setting

Programs

Program is a set of guarded commands

Guarded command

c ≡ g(X) ∧ x ′1 = e1(X) ∧ ... ∧ x ′m = em(X)

A program state is a valuation of X
Transition s → s′

corresponding valuations of primed and unprimed variables
satisfy one of the guarded commands

Each command is deterministic

The program can be nondeterministic

Relative Completeness of Abstraction Refinement

The Formal Setting

An Example Program

C Program
L1: x = 0;
L2: while(x >= 0){

x = x + 1;
}

L3: if(y == 25){
L4: if (y != 25){
L5: z = -1;
L6: while(z!= 0){

z = z -1;
}
error:;

}
}

Set of guarded commands

variables X = {x , y , z,pc}

c1 : pc = l1 → pc := l2, x := 0
c2 : pc = l2 ∧ x ≥ 0 → x := x + 1
c3 : pc = l2 ∧ x < 0 → pc := l3
c4 : pc = l3 ∧ y = 25 → pc := l4
c5 : pc = l4 ∧ y 6= 25 → pc := l5
c6 : pc = l5 → pc := l6, z := −1
c7 : pc = l6 ∧ z 6= 0 → z := z − 1
c8 : pc = l6 ∧ z = 0 → pc := error

Relative Completeness of Abstraction Refinement

The Formal Setting

Symbolic Representation of Sets Of States

Symbolic representation of set of states

ϕ ≡
∨
i∈I

∧
j∈Ji

ϕij

Fixed infinite set of atomic formulas

Partial order on formulas ϕ ≤ ϕ′

ϕ⇒ ϕ′ is provable by a given theorem prover

ϕ⇒ ϕ′does not entail ϕ ≤ ϕ′

Requirement to the theorem prover
ϕ ∧ ϕ′ ⇒ ϕ
ϕ⇒ ϕ ∨ ϕ′

Relative Completeness of Abstraction Refinement

The Formal Setting

The Pre Operator

c - guarded
command

ϕ - formula

C - program

prec(ϕ) ≡ g(X) ∧ ϕ[e1(X), . . .em(X)/x1, . . . , xm]

pre(ϕ) ≡
∨

c∈C prec(ϕ)

Example

c7 : pc = l6 ∧ z 6= 0 → z := z − 1

ϕ = z < 5

Relative Completeness of Abstraction Refinement

The Formal Setting

The Pre Operator Contd.

Example

ϕ ≡ pc = l6 ∧ z = 0

pre(ϕ) = (pc = l6 ∧ z 6= 0 ∧ z − 1 = 0) ∨ (pc = l5 ∧ −1 = 0)

Set of guarded commands

c1 : pc = l1 → pc := l2, x := 0
c2 : pc = l2 ∧ x ≥ 0 → x := x + 1
c3 : pc = l2 ∧ x < 0 → pc := l3
c4 : pc = l3 ∧ y = 25 → pc := l4
c5 : pc = l4 ∧ y 6= 25 → pc := l5
c6 : pc = l5 → pc := l6, z := −1
c7 : pc = l6 ∧ z 6= 0 → z := z − 1
c8 : pc = l6 ∧ z = 0 → pc := error

Relative Completeness of Abstraction Refinement

The Formal Setting

The Post Operator

c - guarded
command

ϕ - formula

C - program

postc(ϕ) ≡ (∃X .ϕ ∧ g(X) ∧ x ′
1 = e1(X) ∧ ... ∧ x ′

m = em(X))[X/X ′]

post(ϕ) ≡
∨

c∈C postc(ϕ)

Example

c2 : pc = l2 ∧ x ≥ 0 → x := x + 1

ϕ = pc = l2 ∧ x = 0

Relative Completeness of Abstraction Refinement

The Formal Setting

The Post Operator Contd.

Example

ϕ ≡ pc = l2
post(ϕ) = (pc = l2 ∧ x ≥ 1) ∨ (pc = l3 ∧ x < 0)

Set of guarded commands

c1 : pc = l1 → pc := l2, x := 0
c2 : pc = l2 ∧ x ≥ 0 → x := x + 1
c3 : pc = l2 ∧ x < 0 → pc := l3
c4 : pc = l3 ∧ y = 25 → pc := l4
c5 : pc = l4 ∧ y 6= 25 → pc := l5
c6 : pc = l5 → pc := l6, z := −1
c7 : pc = l6 ∧ z 6= 0 → z := z − 1
c8 : pc = l6 ∧ z = 0 → pc := error

Relative Completeness of Abstraction Refinement

The Formal Setting

Correctness

init - initial states
nonInit

safe - safe states
unsafe init

lfp(post,init)

safe

The program is correct if no unsafe state is reachable from
an initial state

Relative Completeness of Abstraction Refinement

The Formal Setting

Invariants

safe(forward) invariant ψ

init ≤ ψ

post(ψ) ≤ ψ

ψ ≤ safe

init

forward
invariant

safe

backward invariant ψ

unsafe≤ ψ

pre(ψ) ≤ ψ

ψ ≤ nonInit

unsafe

backward
invariant

nonInit

Relative Completeness of Abstraction Refinement

The Formal Setting

Proving Correctness

〈F, start, bound〉-invariant
instantiated to 〈post, init, safe〉 - forward invariant
instantiated to 〈pre, unsafe, nonInit〉 - backward invariant

Domain of formulas
Closed under application of F
May not contain lfp(F,start), but still contain a formula
denoting an 〈F, start, bound 〉-invariant

To prove correctness it suffices
compute either a forward invariant
or a backward invariant

Correctness condition: exists ψ
start≤ ψ
F(ψ) ≤ ψ
ψ ≤ bound

Relative Completeness of Abstraction Refinement

The Formal Setting

Proving Correctness Contd.

Iteration of F may not terminate
Upper abstraction F′

F(ϕ) ≤F′(ϕ) for all ϕ
lfp(F′,start) can be computed
lfp(F′,start)≤ bound

lfp(F′,start) is a 〈F,start,bound〉-invariant
Use

predicate abstraction
widening

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Abstraction

ϕ is mapped to an element of a finite lattice L(P)

L(P)

generated by a finite set of predicates P
partial order v

Abstraction function:
ϕ 7→ the smallest (wrt v) element of the lattice ϕ′

such that ϕ ≤ ϕ′

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

The Lattice L(Pn)

Finite free distributive lattice generated by the set of
predicates Pn

Bottom element false

Top element true

Operators ∧ and ∨
Partial order v
Contains start

Generally not closed under F

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

The Lattice L(Pn) Contd.

Each element can be written in disjunctive normal form∨
i∈I

∧
j∈Ji

ϕij

Predicates are pairwise incomparable∨
i∈I

∧
j∈Ji

ϕij v
∨

k∈K

∧
j∈J′

k
ϕ′kj if ∀i ∈ I∃k ∈ K .{ϕij | j ∈ Ji} ⊇ {ϕ′kj | j ∈ J′k}

Example

((x ≤ 0) ∧ (y ≥ 5) ∧ (y 6= 10)) ∨ ((x ≤ y) ∧ (y 6= 0)) v
(x ≤ y) ∨ ((x ≤ 0) ∧ (y ≥ 5)) ∨ (y = 2x)

(x < 2) 6v (x < 3)

ϕ v ϕ′ implies ϕ ≤ ϕ′

ϕ ∧ ϕ′ v ϕ

ϕ v ϕ ∨ ϕ′

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

The Abstract Operator

F# is the ’best’ abstraction of F with respect to L(P)

F# ≡ α ◦ F ◦ γ

The meaning function γ is the identity
α and γ form a Galois connection Definition

guaranteed by requirement to the theorem prover
guarantees correctness of algorithm

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Galois Connection

Two partially ordered sets
the infinite set of all formulas
with ≤
L(P) with v

Two monotone functions
α
γ

α and γ satisfy the properties
α(γ(ψ)) v ψ
ϕ ≤ γ(α(ϕ))

α(ϕ) v ψ iff ϕ ≤ γ(ψ)

L(P)

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Method I

Start with n=0 and repeat
1 construct F#

n

2 iterate F#
n to compute lfp(F#

n ,start)
if lfp(F#

n ,start) ≤ bound then stop with "Success"

3 refine Pn to obtain Pn+1

4 n++

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Method I

Start with n=0 and repeat
1 construct F#

n

2 iterate F#
n to compute lfp(F#

n ,start)
if lfp(F#

n ,start) ≤ bound then stop with "Success"

3 refine Pn to obtain Pn+1

4 n++

lfp(F#
n ,start) is computed over a finite lattice ⇒

computation is guaranteed to terminate

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Method I

Start with n=0 and repeat
1 construct F#

n

2 iterate F#
n to compute lfp(F#

n ,start)
if lfp(F#

n ,start) ≤ bound then stop with "Success"

3 refine Pn to obtain Pn+1

4 n++

lfp(F#
n ,start) is computed over a finite lattice ⇒

computation is guaranteed to terminate

Terminates for some n ⇒
lfp(F#

n ,start) is a 〈F,start,bound〉 - invariant

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

The Refinement Procedure

Refinement procedure generates
P0 ⊂ P1 ⊂ . . . ⊂ Pn ⊂ Pn+1 . . .

Pn - finite set of predicates over states
predicates identified with atomic formulas

L(P0) ⊂ L(P1) ⊂ . . . ⊂ L(Pn) ⊂ L(Pn+1) . . .

αn is the abstraction function wrt L(Pn)

Increasing precision of αn for increasing n

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

The Refinement Procedure Contd.

The algorithm procedure produces the sequence
ϕ0 = start
ϕn+1 = ϕn∨ F(ϕn)

Pn=atoms(ϕn)

Backward refinement

Forward refinement

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Abstract Fixpoint Iteration with Iterative Abstraction
Refinement

ϕ0 := start
n: = 0
loop

Pn := atoms(ϕn)
construct abstract operator F#

n defined by Pn

ψ := lfp(F#
n ,start)

if (ψ ≤ bound) then
STOP with "Success"

ϕn+1 := ϕn∨ F(ϕn)
n:= n + 1

endloop

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Example

〈 start, F, bound〉 := 〈 unsafe, pre, nonInit 〉
unsafe =pc = error

nonInit =
pc = l2 ∨ pc = l3 ∨ pc = l4 ∨ pc = l5 ∨ pc = l6 ∨ pc = error

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Example

ϕ0 = unsafe = pc = error

P0 = {pc = error}
pre#

0 (unsafe) = α0(pc = l6 ∧ z = 0)=true

lfp(pre#
0 ,unsafe) = true

lfp(pre#
0 ,unsafe) 6≤ nonInit

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Example

ϕ1 = ϕ0∨ pre(ϕ0) = (pc = error) ∨ (pc = l6 ∧ z = 0)

P1 = {pc = error ,pc = l6, z = 0}
pre#

1 (unsafe) = α1(pc = l6 ∧ z = 0) = pc = l6 ∧ z = 0

pre#
1 (unsafe ∨pc = l6 ∧ z = 0) =
α1((pc = l6 ∧ z = 0)∨
(pc = l6 ∧ z 6= 0 ∧ z = 1)∨
(pc = l5 ∧ −1 = 0)) =
(pc = l6 ∧ z = 0) ∨ (pc = l6)∨ true =
true

lfp(pre#
1 ,unsafe) = true

lfp(pre#
1 ,unsafe) 6≤ nonInit

Relative Completeness of Abstraction Refinement

Method I: Predicate Abstraction with Refinement

Example

ϕ2=...

Terminates in four iterations

lfp(pre#
4 ,unsafe) ≤ nonInit

Disjuncts with unsatisfiable conjuncts not removed

Relative Completeness of Abstraction Refinement

Method II: Oracle-Guided Widening

The Widen Operator

Applied to a formula in
disjunctive normal form
yields a formula in
disjunctive normal form

Drops out some
conjuncts from some
disjuncts

widen (ϕ) is weaker than
ϕ, i.e. it denotes a larger
set of states

ϕ ≤ widen(ϕ)

Relative Completeness of Abstraction Refinement

Method II: Oracle-Guided Widening

Overview

Iteratively applies the concrete operator over formulas

At each iteration a widening operator is applied to the result

until ϕn+1 ≤ ϕn

ϕn ≤ bound ⇒
ϕn is a 〈F, start, bound〉-invariant

Relative Completeness of Abstraction Refinement

Method II: Oracle-Guided Widening

The Oracle

Enumeration of widening operators: widen (0),widen (1),. . .

At each step an oracle gives us a natural number -
determines the widening operator to be applied

Each sequence of natural numbers determines a fixpoint
iteration sequence

Relative Completeness of Abstraction Refinement

Method II: Oracle-Guided Widening

Method II

ϕ′0,old ,n := start,false,0
loop

if (ϕ′n ≤ old) then
if (ϕ′n ≤ bound) then

STOP with "Success"
else

STOP with "Don’t know"
else
old := ϕ′n
i := guess provided by oracle
ϕ′n+1 := widen(i ,ϕ′n∨ F(ϕ′n))
n:= n + 1

endloop

Relative Completeness of Abstraction Refinement

Method II: Oracle-Guided Widening

Example

〈 start, F, bound〉:=〈 unsafe, pre, nonInit〉
unsafe =pc = error

nonInit =
pc = l2 ∨ pc = l3 ∨ pc = l4 ∨ pc = l5 ∨ pc = l6 ∨ pc = error

Relative Completeness of Abstraction Refinement

Method II: Oracle-Guided Widening

Example

ϕ0 = unsafe = (pc = error)
ϕ1 = widen(ϕ0 ∨ pre(ϕ0))=

widen((pc = error) ∨ (pc = l6 ∧ z = 0))=
(pc = error) ∨ (pc = l6)

ϕ2 = widen(ϕ1 ∨ pre(ϕ1))=
widen((pc = error) ∨ (pc = l6) ∨ (pc = l6 ∧ z = 0)
∨(pc = l6 ∧ z 6= 0) ∨ (pc = l5))) =
(pc = error) ∨ (pc = l6) ∨ (pc = l5)

Relative Completeness of Abstraction Refinement

Method II: Oracle-Guided Widening

Example

ϕ3 = widen(ϕ2 ∨ pre(ϕ2))=
widen((pc = error) ∨ (pc = l6) ∨ (pc = l5)∨
(pc = l6 ∧ z = 0) ∨ (pc = l6 ∧ z 6= 0)∨
(pc = l5) ∨ (pc = l4 ∧ y 6= 25))) =
(pc = error) ∨ (pc = l6) ∨ (pc = l5)∨
(pc = l4 ∧ y 6= 25)

Relative Completeness of Abstraction Refinement

Method II: Oracle-Guided Widening

Example

ϕ4 = widen(ϕ3 ∨ pre(ϕ3))=
widen((pc = error) ∨ (pc = l6)∨
(pc = l5) ∨ (pc = l4 ∧ y 6= 25)∨
(pc = l6 ∧ z = 0) ∨ (pc = l6 ∧ z 6= 0)∨
(pc = l5) ∨ (pc = l4 ∧ y 6= 25)∨
(pc = l3 ∧ y = 25 ∧ y 6= 25)) =
(pc = error) ∨ (pc = l6) ∨ (pc = l5)∨
(pc = l4 ∧ y 6= 25)∨
(pc = l3 ∧ y = 25 ∧ y 6= 25)

Relative Completeness of Abstraction Refinement

Method II: Oracle-Guided Widening

Example

ϕ4 ≤ ϕ3

ϕ4 ≤ nonInit

ϕ4 is an 〈pre,unsafe,nonInit〉 -invariant

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Relative Completeness of Abstract Backward
Iteration with Backward Refinement

Theorem

If Method II with 〈F,start,bound〉 := 〈pre,unsafe,nonInit〉
terminates with success, then
Method I with 〈F,start,bound〉 := 〈pre,unsafe,nonInit〉 also
terminates with success.

Proof details

Method I generates

(start ,pre#
n (start), . . . , lfp(pre#

n , start))n=1,2,...

All possible infinite branches arising from possible choices
of the widening operators

(start ,widen(i1) ◦ pre(start), . . .)(i1,i2,...)∈NN

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Relative Completeness of Abstract Backward
Iteration with Backward Refinement

The precision of the abstract operator F# is related to the
expressiveness of the set of predicates P it is induced by.

Lemma

If the set of predicates P can express an
〈F,start,bound〉-invariant ψ, then the least fixpoint of F#, the
best abstraction of F over L(P), is an 〈F,start,bound〉-invariant
as well.

Proof details

We cannot expect a realistic abstraction refinement procedure
that generates such a set P whenever it exists.

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Forward Fixpoint Iteration

Relative completeness for forward fixpoint iteration with
backward refinement?

The key point is the backward direction of the refinement

Weakest precondition operator

p̃re(ϕ) = ¬pre(¬ϕ)

s satisfies p̃re(ϕ) iff all successors of s satisfy ϕ

lfp(p̃re, safe) denotes the set of all states from which only
safe states are reachable
Dual backward refinement

ϕ0 = safe
ϕn+1 = ϕn ∨ p̃re(ϕn)

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Forward Fixpoint Iteration with Backward
Abstraction Refinement

abstract backward fixpoint iteration
with backward refinement

P0 = atoms(unsafe)
Pn+1 = Pn∪ atoms(pre(ϕn))

abstract forward fixpoint iteration
with dual backward refinement

P̃0 = atoms(safe)
P̃n+1 = P̃n∪ atoms(¬pre(ϕn))

init

unsafe

ψ - 〈pre,unsafe,nonInit〉
-invariant

¬ψ - 〈post,init,safe〉
-invariant

If ψ can be expressed over Pn

then ¬ψ can be expressed over {¬p | p ∈ Pn}= P̃n

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Forward Fixpoint Iteration with Backward
Abstraction Refinement(Method III)

ϕ0 := safe
n: = 0
loop

P̃n := atoms(ϕn)
construct abstract operator post#n defined by P̃n

ψ := lfp(post#n ,init)
if (ψ ≤ safe) then

STOP with "Success"
ϕn+1 := ϕn ∨ p̃re(ϕn)
n:= n + 1

endloop

Relative Completeness of Abstraction Refinement

Relative Completeness for Backward Refinement

Relative Completeness of Abstract Forward
Iteration with Backward Refinement

Theorem

If Method II with 〈F, start, bound〉 := 〈pre, unsafe, nonInit〉
terminates with success, then
Method III also terminates with success.

Proof.

ψ - 〈pre, unsafe, nonInit〉 -invariant computed by Method II

ψ can be expressed over Pn

¬ψ - 〈post, init, safe〉 -invariant, can be expressed over P̃n

Relative Completeness of Abstraction Refinement

Forward vs. Backward Refinement

Example Program

The completeness of Method I relative to Method II does not
hold for the forward case 〈F, start, bound〉 := 〈post, init, safe〉

C Program
L1: x = 0;
L2: while(x >= 0){

x = x + 1;
}

L3: if(y == 25){
L4: if (y != 25){
L5: z = -1;
L6: while(z!= 0){

z = z -1;
}
error:;

}
}

Set of guarded commands

variablesX = {x , y , z}
c1 : pc = l1 → pc := l2, x := 0
c2 : pc = l2 ∧ x ≥ 0 → x := x + 1
c3 : pc = l2 ∧ x < 0 → pc := l3
c4 : pc = l3 ∧ y = 25 → pc := l4
c5 : pc = l4 ∧ y 6= 25 → pc := l5
c6 : pc = l5 → pc := l6, z := −1
c7 : pc = l6 ∧ z 6= 0 → z := z − 1
c8 : pc = l6 ∧ z = 0 → pc := error

Relative Completeness of Abstraction Refinement

Forward vs. Backward Refinement

Method II Forward

Iterative application of post and oracle-guided widening

Drops all conjuncts containing x

Does not get "stuck" in the nonterminating loop

Terminates with success

Relative Completeness of Abstraction Refinement

Forward vs. Backward Refinement

Method I with Forward Refinement

Does not terminate

Refinement gets "stuck" in the first nonterminating loop

x = 0, x = 1, x = 2 . . .

Relative Completeness of Abstraction Refinement

Forward vs. Backward Refinement

Forward vs. Backward Refinement

Refinement must be based on the concrete execution
Forward

the concrete execution of a guarded command is
deterministic
an abstract execution is in general nondeterministic
the concrete execution follows one branch and may get
stuck in a loop

Backward
the concrete execution is nondeterministic
the concrete execution reaches as many program points as
an abstract one
pre must produce also unsatisfiable disjuncts

Relative Completeness of Abstraction Refinement

Discussion and Summary

BDD’s and the Free Lattice

Finite-state model checker
implement abstract fixpoint iteration
based on BDD’s
Boolean variable for each predicate
fixpoint termination test does not use logical meaning of
predicates

v strictly stronger than ≤
[x < 2] 6v [x < 3]
The fixpoint test in Method I is strictly weaker than the one
of Method II

Relative Completeness of Abstraction Refinement

Discussion and Summary

Boolean Expressions

No need to add the negated versions of predicates to L(P)

More efficient construction of the abstract fixpoint operator

The lattice of Boolean expressions L(P
⋃
{¬ϕ | ϕ ∈ P}) is

an instance

In the setting of Boolean expressions Method III iterates
pre starting with unsafe and adds the negation of the
predicates

Relative Completeness of Abstraction Refinement

Discussion and Summary

More Powerful Refinement

Backward refinement procedure also adds predicates that
occur in unsatisfiable conjuncts

Example

pc = l5 ∧ z ′ = −1 ∧ pc′ = l6
atoms(prec(pc = l6 ∧ z = 0)) = atoms(pc = l5 ∧ −1 = 0)=

{pc = l5,−1 = 0}

Relative Completeness of Abstraction Refinement

Discussion and Summary

Widening vs. Predicate Abstraction

Two abstraction methods for verification
Widening is not complete relative to the predicate
abstraction with backward refinement

dropping a conjunct less precise than
replacing a conjunct with a formula over already generated
predicates

Their power depends on the given formalism
atoms({x = 0}) = {x ≤ 0, x ≥ 0}
Method I with forward refinement will succeed on the
example

Relative Completeness of Abstraction Refinement

Discussion and Summary

Other Issues

Incorrect programs

Finite simulation or bisimulation quotient

Generating small sets of predicates

Relative Completeness of Abstraction Refinement

Discussion and Summary

Summary

Different refinement procedures can be evaluated not only
practically

Comparison with oracle-guided fixpoint iteration gives a
quality measure

Predicate abstraction with backward refinement is at least
as powerful as oracle-guided fixpoint iteration

Thank you!

Relative Completeness of Abstraction Refinement

Proof.

1

atoms(pre(
∨
i∈I

∧
j∈Ji

ϕij)) =
⋃

c∈C

{atoms(prec(ϕij)) | i ∈ I, j ∈ Ji}

2

ϕn -the formula at the beginning of n-th iteration of Method I
ϕ′n -the formula at the beginning of n-th iteration of Method II
atoms(ϕn) ⊇ atoms(ϕ′n)

Proof by Induction

3 ϕ′n - an 〈F,start,bound〉-invariant that can be expressed in atoms(ϕ′n) ⊆ Pn.

Return

Relative Completeness of Abstraction Refinement

atoms(ϕn) ⊇atoms(ϕ′n)

Proof.

n = 0

ϕ0 = start and ϕ′
0 = start

n + 1

ϕn+1 = ϕn∨pre(ϕn)
ϕ′

n+1 =widen(ϕ′
n∨pre(ϕ′

n))
IH ⇒ atoms(ϕn) ⊇atoms(ϕ′

n)
atoms(pre(ϕn)) ⊇ atoms(pre(ϕ′

n))
widen can only drop atomic formulas

Return

Relative Completeness of Abstraction Refinement

Lemma
If the set of predicates P can express an 〈F,start,bound〉-invariant ψ, then the least
fixpoint of F#, the best abstraction of F over L(P), is an 〈F,start,bound〉-invariant as
well.

Proof.

1 For all k : F#k
(start) ≤ ψ

1 F#0
(start) = start ≤ψ

2 F#(F#k
(start)) ≤ F#(ψ) ≤ ψ

F#(ψ)-the least element in L(P) greater or equal to F(ψ)
F(ψ) ≤ ψ
ψ is an element of L(P)

2 lfp(F#,start) ≤ ψ ≤ bound

3 lfp(F#,start) is an 〈F,start,bound〉-invariant

Return

	Motivation
	Automatic Predicate Abstraction
	Relative Completeness

	The Formal Setting
	Method I: Predicate Abstraction with Refinement
	Method II: Oracle-Guided Widening
	Relative Completeness for Backward Refinement
	Forward vs. Backward Refinement
	Discussion and Summary

