

Harald Ganzinger
Uwe Waldmann

Tutorials for "Logic in Computer Science" Exercise sheet 4

Exercise 4.1:

Skolemization preserves the (un-)satisfiability of prenex formulas. Show that it does not preserve validity: Give a signature $\Sigma=(\Omega, \Pi)$ and a closed prenex Σ-formula F without equality, such that F is valid, but the formula F^{\prime} that is obtained by Skolemizing F is not valid.

Exercise 4.2:

Theorem 1.10 holds for (universally quantified) clauses. Show that it does not hold for arbitrary Σ-formulas: Give a signature $\Sigma=(\Omega, \Pi)$, such that Ω contains at least one constant symbol, and a closed Σ-formula F without equality, such that F is satisfiable but does not have a Herbrand model over Σ. (Why does transformation into clause normal form change this situation?)

Exercise 4.3:

Ackermann's function $a c k(m, n)$ is defined using the following equations:

$$
\begin{aligned}
\operatorname{ack}(0, n) & =n+1 \text { for } n \in \mathbb{N} \\
\operatorname{ack}(m+1,0) & =\operatorname{ack}(m, 1) \text { for } m \in \mathbb{N} \\
\operatorname{ack}(m+1, n+1) & =\operatorname{ack}(m, \operatorname{ack}(m+1, n)) \text { for } m, n \in \mathbb{N}
\end{aligned}
$$

Use Noetherian induction to show that the recursive computation of $\operatorname{ack}(m, n)$ terminates for all $m, n \in \mathbb{N}$.

Exercise 4.4:

Two ordered sets $\left(M_{1}, \succ_{1}\right)$ and $\left(M_{2}, \succ_{2}\right)$ are called order-isomorphic, if there exists a bijection $h: M_{1} \rightarrow M_{2}$ such that for all $x, y \in M_{1}: x \succ_{1} y$ if and only if $h(x) \succ_{2} h(y)$.

Let the ordering \succ over $\{A, B\}$ be defined by $A \succ B$. Is the set of finite multisets over $\{A, B\}$ (ordered by the multiset extension of \succ) order-isomorphic to ($\mathbb{N},>$) or not? Prove your hypothesis.

Exercise 4.5:

Find a total ordering \succ on the ground atoms A, B, C, D, E, such that the associated clause ordering \succ_{C} orders the following clauses like this:

$$
B \vee C \succ_{C} A \vee A \vee \neg C \succ_{C} C \vee E \succ_{C} C \vee D \succ_{C} \neg A \vee D \succ_{C} \neg E
$$

Exercise 4.6:

Prove that the multiset extension $\succ_{m u l}$ of a total ordering \succ is total.

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before May 10, 11:00 (Group D: before May 13, 11:00). Don't forget to write your name and the name of your tutorial group (B, C, D) on your solution.

