

Universität des Saarlandes FR Informatik

Harald Ganzinger Uwe Waldmann May 2, 2002

Tutorials for "Logic in Computer Science" Exercise sheet 4

Exercise 4.1:

Skolemization preserves the (un-)satisfiability of prenex formulas. Show that it does not preserve validity: Give a signature $\Sigma = (\Omega, \Pi)$ and a closed prenex Σ -formula F without equality, such that F is valid, but the formula F' that is obtained by Skolemizing F is not valid.

Exercise 4.2:

Theorem 1.10 holds for (universally quantified) clauses. Show that it does not hold for arbitrary Σ -formulas: Give a signature $\Sigma = (\Omega, \Pi)$, such that Ω contains at least one constant symbol, and a closed Σ -formula F without equality, such that F is satisfiable but does not have a Herbrand model over Σ . (Why does transformation into clause normal form change this situation?)

Exercise 4.3:

Ackermann's function ack(m, n) is defined using the following equations:

$$\begin{aligned} ack(0,n) &= n+1 \ \text{ for } n \in \mathbb{N} \\ ack(m+1,0) &= ack(m,1) \ \text{ for } m \in \mathbb{N} \\ ack(m+1,n+1) &= ack(m,ack(m+1,n)) \ \text{ for } m,n \in \mathbb{N} \end{aligned}$$

Use Noetherian induction to show that the recursive computation of ack(m, n) terminates for all $m, n \in \mathbb{N}$.

Exercise 4.4:

Two ordered sets (M_1, \succ_1) and (M_2, \succ_2) are called order-isomorphic, if there exists a bijection $h: M_1 \to M_2$ such that for all $x, y \in M_1: x \succ_1 y$ if and only if $h(x) \succ_2 h(y)$.

Let the ordering \succ over $\{A, B\}$ be defined by $A \succ B$. Is the set of finite multisets over $\{A, B\}$ (ordered by the multiset extension of \succ) order-isomorphic to $(\mathbb{N}, >)$ or not? Prove your hypothesis.

Exercise 4.5:

Find a total ordering \succ on the ground atoms A, B, C, D, E, such that the associated clause ordering \succ_C orders the following clauses like this:

$$B \lor C \succ_C A \lor A \lor \neg C \succ_C C \lor E \succ_C C \lor D \succ_C \neg A \lor D \succ_C \neg E$$

Exercise 4.6:

Prove that the multiset extension \succ_{mul} of a total ordering \succ is total.

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before May 10, 11:00 (Group D: before May 13, 11:00). Don't forget to write your name and the name of your tutorial group (B, C, D) on your solution.