
���
�

�� k

I N F O R M A T I K

Universität

des

Saarlandes

FR Informatik

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Harald Ganzinger
Uwe Waldmann

July 12, 2002

Tutorials for “Logic in Computer Science”
Sample solution for exercise sheet 12

Exercise 12.1:
(a) Give an example of a finite time structure M = (S,R,L) and a state s0 ∈ S such that

M,s0 |= AG(EF P), but M,s0 6|= AF P .

Solution:

s0

∅
s1

{P}

For every path starting from s0 and for every state on that path, there exists a path from
that state on which P is sometimes true. However, it is not true that on every path starting
from s0, P is sometimes true (there exists a path that remains in s0 all the time).

(b) Give an example of a finite time structure M = (S,R,L) and a state s0 ∈ S such that
M,s0 |= EG(EFP), but M,s0 6|= EGFP .

Solution:

s0

∅
s1

{P}
s2

∅

There exists a path (namely the one that remains in s0 all the time), such that from each
state on that path there exists a path on which P is sometimes true. However, it is not
true that there exists a path, such that for each state on this path there exists some later
state on this path in which P is true.

Exercise 12.2:
Express the following statements in CTL:

(a) It is possible that the CD drive of a computer gets into such a state that opening it
becomes impossible forever.

Solution:

EF(AG¬open)

(b) A student cannot take the electrical engineering exam more than two times.

Solution:

AG(ee exam → AXAG(ee exam → AXAG¬ee exam))

Exercise 12.3:
Let S = {l0, l1, l2, l3, l4, l5}, let Π = {p, q}, and let M = (S,R,L) be the following time
structure (where R is represented by →):

l0
{p}

l1
{q}

l2
∅

l3
{p, q}

l4
∅

l5
∅

Compute [[AX AX E((¬q)Up)]].

Solution:

[[p]] = {l0, l3}
[[q]] = {l1, l3}

[[¬q]] = S \ [[q]]

= {l0, l2, l4, l5}
[[E((¬q)Up)]] = µ Z. [[p]] ∪ ([[¬q]] ∩R−1(Z))

= {l0, l2, l3, l4, l5}
[

τ0(∅) = ∅
τ1(∅) = {l0, l3}
τ2(∅) = {l0, l3, l2, l5}
τ3(∅) = {l0, l3, l2, l5, l4}
τ4(∅) = {l0, l3, l2, l5, l4} = τ3(∅)]

[[AX E((¬q)Up)]] = S \ (R−1(S \ [[E((¬q)Up)]]))

= {l1, l2, l3, l4, l5}
[[AX AX E((¬q)Up)]] = S \ (R−1(S \ [[AX E((¬q)Up)]]))

= {l1, l2, l3, l4}

Exercise 12.4:
The syntax of CTL given on slide 20 permits state formulas like EAX P (for P ∈ Π). The
simplified definition given on slide 23 and 34 does not permit formulas of this kind. Why
is this difference semantically irrelevant?

Solution:

EAX P is equivalent to AX P . And more generally: whenever a state formula is allowed
by the definition on slide 20 but excluded by the simplified definition on slide 23, then it
contains two or more path quantifiers (E, A) following directly after another. In this case,
all but the last quantifier can be deleted without changing the semantics of the formula.
The resulting state formula is allowed by the simplified definition on slide 23.

Exercise 12.5:
Give an example of a Boolean function f with three variables x, y, z, such that the minimal
OBDD for f has 5 interior nodes for the variable ordering x < y < z and 4 interior nodes
for some other variable ordering.

Solution:

The Boolean function f(x, y, z) = y ∨ (x ∧ ¬z) ∨ (¬x ∧ z) has an OBDD with 5 interior
nodes for the variable ordering x < y < z (i. e., x is the topmost node), and an OBDD
with 4 interior nodes for the variable ordering y < x < z.

Exercise 12.6:
Let p be an arbitrary mixed CTL formula such that Z is the only explicit set of states
occurring in p. Is the function τ : Z 7→ p necessarily monotone?

Solution:

No, if Z occurs in p below a negation sign or in the left argument of an implication, then
τ need not be monotone. For instance, the function τ : Z 7→ ¬Z that maps each set of
states to its complement is not monotone.

