

Tutorials for „Logic in Computer Science" Exercise sheet 1

Exercise 1.1:

Let $\Sigma=(\Omega, \Pi)$ be a signature, where $\Omega=\{f / 2, g / 1, a / 0, b / 0\}$ and $\Pi=\{p / 1\}$; let X be the set of variables $\{x, y, z\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae, which are neither?
(a) $\neg p(f(x, y))$
(b) $f(x, x) \approx x$
(c) $g(f(a, b))$
(d) $p(g(x)) \vee p(x)$
(e) $p(\neg g(x))$
(f) $p(a) \wedge p(b) \wedge y$
(g) $\exists y(\neg p(f(y, y)))$
(h) $\forall x(g(p(x)) \approx g(x))$

Exercise 1.2:

Formalize the following statements in the signature $\Sigma_{P A}$ of Peano arithmetic:
(a) 3 is not divisible by 2 .
(b) All numbers between 1 and 3 are even.
(c) There exists exactly one number between 1 and 3 .
(d) There does not exists a largest square number.

Exercise 1.3:

Compute the results of the following substitutions:
(a) $f(g(x), x)[g(a) / x]$
(b) $p(f(y, x))[x / y]$
(c) $\forall y(p(f(y, x)))[x / y]$
(d) $\forall y(p(f(y, x)))[y / x]$
(e) $\forall y(p(f(z, g(y))) \vee \exists z(g(z) \approx y))[g(b) / z]$
(f) $\exists y(f(x, y) \approx x \rightarrow \forall x(f(x, y) \approx x))[g(y) / y, g(z) / x]$

Exercise 1.4:

Prove or refute the following statement:
If t, s, s^{\prime} are terms and x and y are distinct variables, then $(t[s / x])\left[s^{\prime} / y\right]=t\left[s / x, s^{\prime} / y\right]$.

Exercise 1.5:

At http://www.mpi-sb.mpg.de/~uwe/lehre/logic/programs/you can find the following two files:
pl1_syntax.ml: contains the definition of an SML datatype term for terms over arbitrary signatures.
exercise1.ml: contains the definition of a function termvars that computes the list of all variables occurring in an argument of the type term.

Extend pl1_syntax.ml with the definition of SML datatypes atom for atoms and wff for formulae; extend exercise1.ml with the definition of functions atomvars and formulavars that compute the list of all variables occurring in an atom or in a formula, respectively.

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before April 18, 11:00. Don't forget to write your name and the name of your tutorial group (B, C, D) on your solution.

