Problem 1 (Algebras and semantics)
Let $\Sigma=(\Omega, \Pi)$ be a signature, let $p\left(t_{1}, \ldots, t_{n}\right)$ be a ground Σ-atom, and let N be a set of ground Σ-clauses. Define

$$
\begin{aligned}
& N^{+}=\left\{C \in N \mid p\left(t_{1}, \ldots, t_{n}\right) \text { occurs positively in } C\right\} \\
& N^{-}=\left\{C \in N \mid p\left(t_{1}, \ldots, t_{n}\right) \text { occurs negatively in } C\right\} \\
& N^{0}=\left\{C \in N \mid p\left(t_{1}, \ldots, t_{n}\right) \text { does not occur in } C\right\}
\end{aligned}
$$

Prove: If $N^{-}=\emptyset$, then N is satisfiable if and only if N^{0} is satisfiable.

Problem 2 (Resolution, model construction)

$$
(3+3=6 \text { points })
$$

Let $\Sigma=(\Omega, \Pi)$ be a signature with $\Omega=\{a / 0, f / 1\}$ and $\Pi=\{p / 1\}$. Suppose that the atom ordering \succ is defined in such a way that $p\left(f^{n}(a)\right) \succ p\left(f^{m}(a)\right)$ if and only if $n>m \geq 0$. Let N be the following set of clauses:

$$
\begin{gathered}
p(f(f(a))) \\
\neg p(x) \vee p(f(x))
\end{gathered}
$$

Part (a)

Sketch how the set $G_{\Sigma}(N)$ of all ground instances of clauses in N looks like. How is it ordered with respect to the clause ordering \succ_{C} ?

Part (b)
Construct the candidate model $I_{G_{\Sigma}(N)}^{\succ}$ of the set of all ground instances of clauses in N.

Problem 3 (Tableau calculus)
Use the tableau calculus to show that the following set of formulas is unsatisfiable:

$$
\{\forall x p(x) \rightarrow p(f(x)), \quad \exists y p(y) \wedge \neg p(f(f(y)))\}
$$

Problem 4 (Fixpoint theory)
Let $f: 2^{U} \rightarrow 2^{U}$ be a monotone function. Prove: If f has two fixpoints I and J such that $I \cap J=\emptyset$, then \emptyset is a fixpoint of f.

Problem 5 (Prolog)

$$
(2+3+3=8 \text { points })
$$

Part (a)
Define a predicate mapempty (l) that succeeds if l is a list and each element of l is the empty list [].

Part (b)

Define predicates maphd $\left(l, l^{\prime}\right)$ and maptl $\left(l, l^{\prime \prime}\right)$ that take a list of lists $l=$ $\left[l_{1}, \ldots, l_{n}\right]$ and compute lists $l^{\prime}=\left[l_{1}^{\prime}, \ldots, l_{n}^{\prime}\right]$ and $l^{\prime \prime}=\left[l_{1}^{\prime \prime}, \ldots, l_{n}^{\prime \prime}\right]$, respectively, where l_{j}^{\prime} is the head of l_{j} and $l_{j}^{\prime \prime}$ is the tail of l_{j}. For instance, if l is the list $[[1,2,3],[a, b, c]]$, then maphd computes the list $l^{\prime}=[1, a]$ and maptl computes the list $l^{\prime \prime}=[[2,3],[\mathrm{b}, \mathrm{c}]]$.

Part (c)

Let $l=\left[l_{1}, \ldots, l_{n}\right]$ be a list of lists, such that all lists l_{i} have the same length m. The transposition of l is the list $l^{\prime}=\left[l_{1}^{\prime}, \ldots, l_{m}^{\prime}\right]$ where l_{j}^{\prime} is the list of all j-th elements of l_{1}, \ldots, l_{n}. (For instance, the transposition of $[[1,2,3],[a, b, c]]$ is the list $[[1, a],[2, b],[3, c]]$.) Implement a Prolog predicate $\operatorname{tr}\left(l, l^{\prime}\right)$ that computes the transposition l^{\prime} of a list l. You can use the predicates defined in Part (a) and (b).

Problem 6 ($C T L$) (7 points)

Let $S=\left\{l_{0}, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right\}$, let $\Pi=\{p, q\}$, and let $M=(S, R, L)$ be the following time structure (where R is represented by \rightarrow):

Compute $\llbracket \mathrm{EG}(p \rightarrow q) \rrbracket$.

