Problem 1 (Algebras and semantics)

Let $\Sigma = (\Omega, \Pi)$ be a signature, let $p(t_1, \ldots, t_n)$ be a ground Σ -atom, and let N be a set of ground Σ -clauses. Define

$$N^{+} = \{ C \in N \mid p(t_{1}, \dots, t_{n}) \text{ occurs positively in } C \}$$
$$N^{-} = \{ C \in N \mid p(t_{1}, \dots, t_{n}) \text{ occurs negatively in } C \}$$
$$N^{0} = \{ C \in N \mid p(t_{1}, \dots, t_{n}) \text{ does not occur in } C \}$$

Prove: If $N^- = \emptyset$, then N is satisfiable if and only if N^0 is satisfiable.

Problem 2 (Resolution, model construction) (3 + 3 = 6 points)

Let $\Sigma = (\Omega, \Pi)$ be a signature with $\Omega = \{a/0, f/1\}$ and $\Pi = \{p/1\}$. Suppose that the atom ordering \succ is defined in such a way that $p(f^n(a)) \succ p(f^m(a))$ if and only if $n > m \ge 0$. Let N be the following set of clauses:

$$p(f(f(a)))$$
$$\neg p(x) \lor p(f(x))$$

Part (a)

Sketch how the set $G_{\Sigma}(N)$ of all ground instances of clauses in N looks like. How is it ordered with respect to the clause ordering $\succ_{\mathbf{C}}$?

Part (b)

Construct the candidate model $I_{G_{\Sigma}(N)}^{\succ}$ of the set of all ground instances of clauses in N.

Problem 3 (Tableau calculus)

Use the tableau calculus to show that the following set of formulas is unsatisfiable:

$$\left\{ \forall x \, p(x) \to p(f(x)), \quad \exists y \, p(y) \land \neg p(f(f(y))) \right\}$$

Problem 4 (Fixpoint theory)

(7 points)

Let $f: 2^U \to 2^U$ be a monotone function. Prove: If f has two fixpoints I and J such that $I \cap J = \emptyset$, then \emptyset is a fixpoint of f.

(8 points)

Problem 5 (Prolog)

(2 + 3 + 3 = 8 points)

Part (a)

Define a predicate mapempty(l) that succeeds if l is a list and each element of l is the empty list [].

Part (b)

Define predicates maphd(l, l') and maptl(l, l'') that take a list of lists $l = [l_1, \ldots, l_n]$ and compute lists $l' = [l'_1, \ldots, l'_n]$ and $l'' = [l''_1, \ldots, l''_n]$, respectively, where l'_j is the head of l_j and l''_j is the tail of l_j . For instance, if l is the list [[1,2,3],[a,b,c]], then maphd computes the list l' = [1,a] and maptl computes the list l'' = [[2,3], [b,c]].

Part (c)

Let $l = [l_1, \ldots, l_n]$ be a list of lists, such that all lists l_i have the same length m. The transposition of l is the list $l' = [l'_1, \ldots, l'_m]$ where l'_j is the list of all j-th elements of l_1, \ldots, l_n . (For instance, the transposition of [[1,2,3], [a,b,c]] is the list [[1,a], [2,b], [3,c]].) Implement a Prolog predicate tr(l, l') that computes the transposition l' of a list l. You can use the predicates defined in Part (a) and (b).

Problem 6 (CTL)

(7 points)

Let $S = \{l_0, l_1, l_2, l_3, l_4, l_5\}$, let $\Pi = \{p, q\}$, and let M = (S, R, L) be the following time structure (where R is represented by \rightarrow):

Compute $\llbracket \mathsf{EG}(p \to q) \rrbracket$.