Problem 1 (Algebras and semantics)

Let $\Sigma = (\Omega, \Pi)$ be a signature such that Ω contains at least one constant symbol; let

$$\mathcal{A} = (U, \ (f_{\mathcal{A}} : U^n \to U)_{f/n \in \Omega}, \ (p_{\mathcal{A}} \subseteq U^m)_{p/m \in \Pi})$$

be a Σ -algebra. An element $a \in U$ is called *term-generated*, if there exists a ground Σ -term t such that $a = \mathcal{A}(\beta)(t)$ for some assignment β . (Note that, if t is ground, then $\mathcal{A}(\beta)(t) = \mathcal{A}(\beta')(t)$ for all assignments β and β' .) The set of all term-generated elements of U is denoted by \hat{U} .

Part (a)

Prove: If $f/n \in \Omega$, then $a_1, \ldots, a_n \in \hat{U}$ implies $f_{\mathcal{A}}(a_1, \ldots, a_n) \in \hat{U}$.

Part (b)

For $f/n \in \Omega$ and $a_1, \ldots, a_n \in \hat{U}$ define $f_{\hat{\mathcal{A}}}(a_1, \ldots, a_n) = f_{\mathcal{A}}(a_1, \ldots, a_n)$; for $p/m \in \Pi$ define $p_{\hat{\mathcal{A}}} = p_{\mathcal{A}} \cap \hat{U}^m$. By part (a),

$$\hat{\mathcal{A}} = (\hat{U}, \ (f_{\hat{\mathcal{A}}} : \hat{U}^n \to \hat{U})_{f/n \in \Omega}, \ (p_{\hat{\mathcal{A}}} \subseteq \hat{U}^m)_{p/m \in \Pi})$$

is a Σ -algebra. A trivial proof by induction shows that $\mathcal{A}(\beta)(G) = \hat{\mathcal{A}}(\beta)(G)$ for every quantifier-free Σ -formula G and every assignment $\beta : X \to \hat{U}$. Use this result to prove the following proposition: If F is a closed prenex Σ -formula without existential quantifiers, then $\mathcal{A} \models F$ implies $\hat{\mathcal{A}} \models F$.

Part (c)

The property given in part (b) does *not* hold for formulas *with existential* quantifiers. Give an example of a signature Σ , a Σ -algebra \mathcal{A} , and a closed prenex Σ -formula F such that $\mathcal{A} \models F$, but $\hat{\mathcal{A}} \not\models F$.

Problem 2 (Formula transformations, SML) (6 points)

A quantifier Qx in a formula Qx G is superfluous, if all occurrences of x in G are bound in G, or in other words, if there is no occurrence of x in the formula that is bound by Qx itself. For instance, the two underlined quantifiers in the formula

$$\begin{array}{c} & & \\ \forall y \, \underline{\exists x} \, (p(y) \lor \underline{\forall z} \, \forall x \, q(y, x)) \\ & & \\ & & \\ & & \\ \end{array} \right)$$

are superfluous. Write an SML-function dropquant : wff \rightarrow wff that takes a formula F as argument and replaces every subformula Qx G in F by G if Qxis a superfluous quantifier. You may use the data types and auxiliary functions from the sample solution to tutorial exercise 1.5 (see the appendix).

Problem 3 (Resolution)

Use the resolution calculus to prove the validity of the following formula:

$$\left(\forall x \;\forall y \; \left(p(y, f(f(x))) \to p(y, x)\right)\right) \to \left(\left(\exists x \;\neg p(x, f(x))\right) \lor \left(\forall x \; p(f(x), x)\right)\right)$$

Problem 4 (Herbrand interpretations)

Let $\Sigma = (\Omega, \Pi)$ with $\Omega = \{b/0, c/0\}$ and $\Pi = \{p/1, q/2\}$.

Part (a)

How many different Herbrand interpretations over Σ do exist? Explain briefly.

Part (b)

How many different Herbrand models over Σ does the universally quantified clause $\forall x \ (\neg p(c) \lor q(x, b))$ have? Explain briefly.

Problem 5 (Redundancy)

(8 points)

Prove: If N is a (possibly infinite) set of ground clauses, and every clause in N is redundant in N, then every clause in N is a tautology.

Problem 6	(Orderings, redundancy)	(2+3+3=8 points)
-----------	-------------------------	-------------------

Let N be the following set of ground clauses:

$$\neg p_2 \lor p_1 \tag{1}$$
$$\neg p_3 \lor \neg p_1 \tag{2}$$
$$p_4 \lor p_4 \lor p_1 \tag{3}$$
$$p_2 \lor \neg p_1 \lor p_1 \tag{4}$$
$$\neg p_4 \lor \neg p_3 \lor \neg p_2 \tag{5}$$

Part (a)

Let the ordering on atoms be defined by $p_4 \succ p_3 \succ p_2 \succ p_1$. Sort the clauses in N with respect to $\succ_{\rm C}$.

Part (b)

Let \succ be defined as in Part (a). Which clauses in N are redundant in N and which are not redundant with respect to \succ ?

Part (c)

Find another total atom ordering \succ' such that clause (2) is maximal and clause (3) is minimal in N with respect to $\succ'_{\rm C}$.

(6 points)

(2 + 3 = 5 points)