Problem 1 (Algebras and semantics)
Let $\Sigma=(\Omega, \Pi)$ be a signature such that Ω contains at least one constant symbol; let

$$
\mathcal{A}=\left(U,\left(f_{\mathcal{A}}: U^{n} \rightarrow U\right)_{f / n \in \Omega},\left(p_{\mathcal{A}} \subseteq U^{m}\right)_{p / m \in \Pi}\right)
$$

be a Σ-algebra. An element $a \in U$ is called term-generated, if there exists a ground Σ-term t such that $a=\mathcal{A}(\beta)(t)$ for some assignment β. (Note that, if t is ground, then $\mathcal{A}(\beta)(t)=\mathcal{A}\left(\beta^{\prime}\right)(t)$ for all assignments β and β^{\prime}.) The set of all term-generated elements of U is denoted by \hat{U}.

Part (a)

Prove: If $f / n \in \Omega$, then $a_{1}, \ldots, a_{n} \in \hat{U}$ implies $f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right) \in \hat{U}$.

Part (b)

For $f / n \in \Omega$ and $a_{1}, \ldots, a_{n} \in \hat{U}$ define $f_{\hat{\mathcal{A}}}\left(a_{1}, \ldots, a_{n}\right)=f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)$; for $p / m \in \Pi$ define $p_{\hat{\mathcal{A}}}=p_{\mathcal{A}} \cap \hat{U}^{m}$. By part (a),

$$
\hat{\mathcal{A}}=\left(\hat{U},\left(f_{\hat{\mathcal{A}}}: \hat{U}^{n} \rightarrow \hat{U}\right)_{f / n \in \Omega},\left(p_{\hat{\mathcal{A}}} \subseteq \hat{U}^{m}\right)_{p / m \in \Pi}\right)
$$

is a Σ-algebra. A trivial proof by induction shows that $\mathcal{A}(\beta)(G)=\hat{\mathcal{A}}(\beta)(G)$ for every quantifier-free Σ-formula G and every assignment $\beta: X \rightarrow \hat{U}$. Use this result to prove the following proposition: If F is a closed prenex Σ-formula without existential quantifiers, then $\mathcal{A} \models F$ implies $\hat{\mathcal{A}} \models F$.

Part (c)

The property given in part (b) does not hold for formulas with existential quantifiers. Give an example of a signature Σ, a Σ-algebra \mathcal{A}, and a closed prenex Σ-formula F such that $\mathcal{A} \models F$, but $\hat{\mathcal{A}} \not \models F$.

Problem 2 (Formula transformations, SML)
A quantifier $Q x$ in a formula $Q x G$ is superfluous, if all occurrences of x in G are bound in G, or in other words, if there is no occurrence of x in the formula that is bound by $Q x$ itself. For instance, the two underlined quantifiers in the formula

are superfluous. Write an SML-function dropquant : wff -> wff that takes a formula F as argument and replaces every subformula $Q x G$ in F by G if $Q x$ is a superfluous quantifier. You may use the data types and auxiliary functions from the sample solution to tutorial exercise 1.5 (see the appendix).

Use the resolution calculus to prove the validity of the following formula:

$$
(\forall x \forall y(p(y, f(f(x))) \rightarrow p(y, x))) \rightarrow((\exists x \neg p(x, f(x))) \vee(\forall x p(f(x), x)))
$$

Problem 4 (Herbrand interpretations)
Let $\Sigma=(\Omega, \Pi)$ with $\Omega=\{b / 0, c / 0\}$ and $\Pi=\{p / 1, q / 2\}$.
Part (a)
How many different Herbrand interpretations over Σ do exist? Explain briefly.
Part (b)
How many different Herbrand models over Σ does the universally quantified clause $\forall x(\neg p(c) \vee q(x, b))$ have? Explain briefly.

Problem 5 (Redundancy)

Prove: If N is a (possibly infinite) set of ground clauses, and every clause in N is redundant in N, then every clause in N is a tautology.

Problem 6 (Orderings, redundancy)
Let N be the following set of ground clauses:

$$
\begin{gather*}
\neg p_{2} \vee p_{1} \tag{1}\\
\neg p_{3} \vee \neg p_{1} \tag{2}\\
p_{4} \vee p_{4} \vee p_{1} \tag{3}\\
p_{2} \vee \neg p_{1} \vee p_{1} \tag{4}\\
\neg p_{4} \vee \neg p_{3} \vee \neg p_{2} \tag{5}
\end{gather*}
$$

Part (a)

Let the ordering on atoms be defined by $p_{4} \succ p_{3} \succ p_{2} \succ p_{1}$. Sort the clauses in N with respect to \succ_{C}.
Part (b)
Let \succ be defined as in Part (a). Which clauses in N are redundant in N and which are not redundant with respect to \succ ?
Part (c)
Find another total atom ordering \succ^{\prime} such that clause (2) is maximal and clause (3) is minimal in N with respect to $\succ_{\mathrm{C}}^{\prime}$.

