Problem 1 (Unification)

For each of the following unification problems, compute either an mgu or show that it is not unifiable:

$$E_{1} = \{f(g(x), x) = f(y, h(y))\}$$

$$E_{2} = \{h(a, z, z, b) = h(x, x, y, y)\}$$

$$E_{3} = \{g(x, f(x)) = g(y, z), g(x', x') = g(y, f(z'))\}$$

Problem 2 (Well-founded Orderings)

Let (A, >) be a well-founded partial ordering, let $f : A \to A$ be a monotone function (that is, x > y implies f(x) > f(y) for all elements $x, y \in A$). Prove: If $x \ge f(x)$ for all $x \in A$, then x = f(x) for all $x \in A$.

Problem 3 (Reduction Orderings)

(8 points)

(6 points)

The proper subterm relation \triangleright is defined by

 $s \triangleright t$ if and only if there is a $p \in Pos(s)$ such that $p \neq \varepsilon$ and s/p = t.

Is the proper subterm relation a reduction ordering? Give a proof or a counterexample.

Problem 4 (Multisets) (4 + 4 = 8 points)

Let $N = \{M_1, M_2, M_3, M_4, M_5\}$ be a set of multisets of multisets:

$$M_{1} = \{\{a_{4}\}, \{a_{4}\}, \{a_{1}\}, \{a_{1}\}\}$$

$$M_{2} = \{\{a_{2}\}, \{a_{1}\}, \{a_{1}\}\}$$

$$M_{3} = \{\{a_{3}, a_{1}\}\}$$

$$M_{4} = \{\{a_{4}, a_{3}\}, \{a_{3}, a_{2}\}, \{a_{2}, a_{1}, a_{1}\}\}$$

$$M_{5} = \{\{a_{2}\}, \{a_{1}, a_{1}\}, \emptyset\}$$

Part (a)

Let the ordering \succ be defined by $a_4 \succ a_3 \succ a_2 \succ a_1$, let \succ_m be the multiset extension of \succ , and let \succ_{mm} be the multiset extension of \succ_m . Sort the elements of N with respect to \succ_{mm} .

Part (b)

Find another total ordering \succ' on $\{a_1, a_2, a_3, a_4\}$ such that M_3 is maximal and M_1 is minimal in N with respect to \succ'_{mm} , where \succ'_{mm} is the twofold multiset extension of \succ' .

(6 points)

Problem 5 (Confluence)

For a term rewrite system R, we define LSymb(R) as the set of all function symbols occurring in the left-hand sides of rules in R. More formally,

$$\operatorname{LSymb}(R) = \bigcup_{l \to r \in R} \operatorname{Symb}(l),$$

where $\operatorname{Symb}(x) = \emptyset$ and $\operatorname{Symb}(f(t_1, \ldots, t_n)) = \{f\} \cup \bigcup_{i=1}^n \operatorname{Symb}(t_i)$. Prove: If R_1 and R_2 are confluent term rewrite systems, such that $R_1 \cup R_2$ is terminating, and $\operatorname{LSymb}(R_1) \cap \operatorname{LSymb}(R_2) = \emptyset$, then $R_1 \cup R_2$ is confluent.