

Universität des Saarlandes FR Informatik

Harald Ganzinger Uwe Waldmann January 9, 2003

Tutorials for "Decision Procedures for Logical Theories" Exercise sheet 9

Exercise 9.1: (7 P.)

Use the superposition calculus to refute the following set of clauses:

$$f(g(x)) \approx 0 \lor g(x) \approx b$$
$$f(b) \approx 0$$
$$\neg f(g(a)) \approx 0 \lor g(a) \approx c$$
$$\neg f(c) \approx 0$$

Use an ordering \succ that compares two ground terms t and t' by lexicographically comparing first the number of f's in t and t', then the number of g's, then the number of a's, then the number of b's, and finally the number of c's. Use a selection function that selects all trivially false literals (that is, literals of the form $\neg t \approx t$) and nothing else. Perform only inferences that satisfy the conditions of the superposition calculus.

Exercise 9.2: (5 *P*.) Let \mathcal{A} and \mathcal{A}' be Σ -algebras, let *F* be a Σ -formula. Prove: If \mathcal{A} and \mathcal{A}' are isomorphic, then $\mathcal{A} \models F$ if and only if $\mathcal{A}' \models F$.

Exercise 9.3: (3 *P*.)

Let $\mathcal{T} = (\mathbb{Q}, +)$. Use the Nelson/Oppen algorithm $\mathcal{NO}_{\mathcal{D}}[\mathcal{T}, \Phi]$ to check whether the constraint

$$2x + z \approx 0$$

$$\land 2x' + z \approx 0$$

$$\land x + y' \approx y + x' + 1$$

$$\land f(x, x) \approx y$$

$$\land f(x, x') \approx y'$$

over \mathcal{T}^{Φ} is satisfiable.

Exercise 9.4: (5 *P*.) Prove Theorem 7.1: If all paths in a derivation tree from E_1, E_2 end in \perp , then E_1, E_2 is unsatisfiable in $\mathcal{T}_1 + \mathcal{T}_2$.

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before January 16, 14:00.