

Tutorials for "Decision Procedures for Logical Theories" Exercise sheet 6

Exercise 6.1: (7 P.)
Do quantifier elimination in the theory of real closed fields on the following formulas.
(a) $\forall x\left(x^{2} \geq y\right)$
(b) $\exists x \forall y(x+y z=1)$
(c) $\exists x \forall y(y+x z=1)$
(d) $\exists x\left(x^{2}+x y+z<0\right)$
(e) $\exists x\left(x^{2}+y^{2} \leq 1 \wedge x \geq y^{2}\right)$

Exercise 6.2: (5 P.)

Show that quantifier elimination for the the theory of real numbers with equality, addition, multiplication, and rational constants (but without inequality symbols) does not work: Give an example of a quantified formula F (with equality as the only predicate symbol) such that no quantifier-free formula without inequality symbols is equivalent to F, and give an equivalent quantifier-free formula with inequality symbols.

Exercise 6.3: (3 P.)
Define a predicate is_a_natural_number (x) using a first-order formula over the real numbers with equality, inequality, addition, multiplication, cosine, and rational constants.

Exercise 6.4: (5 P.)
Assume that we have a QE procedure for the theory of real closed fields. How can we do QE on a first-order formula that includes terms of the form $\sin (x)$ and $\cos (x)$, where the existentially quantified variable x does not occur anywhere else?

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before December 5, 14:00.

