

Universität des Saarlandes FR Informatik

Harald Ganzinger Uwe Waldmann January 30, 2003

Tutorials for "Decision Procedures for Logical Theories" Exercise sheet 12

Exercise 12.1: (6 P.)

Prove: If the inference system $\triangleright_{\mathsf{L}}$ for list unification terminates with \emptyset, R , then R is a terminating rewrite system with rules $x \approx t$ containing at most one rule for each x. (Rules are oriented from left to right and variables are treated as constants.)

Exercise 12.2: (4 P.)

Show: If E is of unification type finitary, S is an E-unification problem, and C_1 and C_2 are two minimal complete sets of E-unifiers of S, then C_1 and C_2 have the same cardinality.

Exercise 12.3: (4 P.)

In Proposition 5.1 it has been stated that two subtitutions σ and τ with $\sigma \leq \tau$ and $\tau \leq \sigma$ must be equal up to bijective variable renaming. For the relation \lesssim_E^X , this does not hold: Consider the set of equations $I = \{x * x \approx x\}$ and the substitutions $\sigma = [y/x]$ and $\tau = [y * z/x]$. Show that $\sigma \lesssim_I^{\{x\}} \tau$ and $\tau \lesssim_I^{\{x\}} \sigma$, but that there is no bijective renaming ρ such that $x\sigma \approx_I x\tau\rho$.

Exercise 12.4: (6 P.) Give a minimal complete set of AC1-unifiers and a minimal complete set of AC-unifiers of the equation $x^2y \approx az$.

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before February 6, 14:00.