

## Tutorials for "Decision Procedures for Logical Theories" Exercise sheet 1

Exercise 1.1: (5 P.)
Prove that the canonical list model $\mathbb{L}$ described on slide 39 satisfies the list axioms. (Hint: Use the fact that $L$ is uniquely normalizing.)

Exercise 1.2: (5 P.)
Find some non-trivial model of the list axioms that is not isomorphic to the canonical list model $\mathbb{L}$. (An algebra is trivial, if its universe is a one-element set.)

Exercise 1.3: (6 P.)
Let $\Sigma=(\Omega, \Pi)$ be a signature, and let $\left.\mathcal{A}=\left(U_{\mathcal{A}},\left(f_{\mathcal{A}}: U_{\mathcal{A}}^{n} \rightarrow U_{\mathcal{A}}\right)_{f / n \in \Omega},\left(p_{\mathcal{A}} \subseteq U_{\mathcal{A}}^{m}\right)_{p / m \in \Pi}\right)\right)$ and $\left.\mathcal{B}=\left(U_{\mathcal{B}},\left(f_{\mathcal{B}}: U_{\mathcal{B}}^{n} \rightarrow U_{\mathcal{B}}\right)_{f / n \in \Omega},\left(p_{\mathcal{B}} \subseteq U_{\mathcal{B}}^{m}\right)_{p / m \in \Pi}\right)\right)$ be two $\Sigma$-algebras. The product of $\mathcal{A}$ and $\mathcal{B}$ is a $\Sigma$-algebra

$$
\left.\mathcal{A} \times \mathcal{B}=\left(U_{\mathcal{A} \times \mathcal{B}},\left(f_{\mathcal{A} \times \mathcal{B}}: U_{\mathcal{A} \times \mathcal{B}}^{n} \rightarrow U_{\mathcal{A} \times \mathcal{B}}\right)_{f / n \in \Omega},\left(p_{\mathcal{A} \times \mathcal{B}} \subseteq U_{\mathcal{A} \times \mathcal{B}}^{m}\right)_{p / m \in \Pi}\right)\right)
$$

defined as follows:

$$
\begin{aligned}
& U_{\mathcal{A} \times \mathcal{B}}=U_{\mathcal{A}} \times U_{\mathcal{B}} \\
& f_{\mathcal{A} \times \mathcal{B}}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)=\left(f_{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right), f_{\mathcal{B}}\left(b_{1}, \ldots, b_{n}\right)\right) \\
& p_{\mathcal{A} \times \mathcal{B}}=p_{\mathcal{A}} \times p_{\mathcal{B}}
\end{aligned}
$$

Prove: If $\mathcal{F}$ is a set of universally quantified $\Sigma$-equations, and $\mathcal{A}$ and $\mathcal{B}$ are models of $\mathcal{F}$, then $\mathcal{A} \times \mathcal{B}$ is a model of $\mathcal{F}$. (In fact, the same property holds also for products of more than two, or even of infinitely many $\Sigma$-algebras.)

Exercise 1.4: (4 P.)
The property described in the previous exercise holds for sets of equations but not for sets of arbitrary formulas. Give an example of a set $\mathcal{F}$ of universally quantified formulas and two models of $\mathcal{F}$ such that their product is not a model of $\mathcal{F}$. (Hint: Find an equational formula $F$ such that each model of $F$ has at most two elements.)

Put your solution into the mail box at the door of room 627 in the MPI building (46.1) before October 31, 14:00.

Note: In case of group work, write the names of all group members (not more than three!) on a single solution sheet. Do not submit several identical solution sheets.

