
3.6 Constraint Superposition

So far:

Refutational completeness proof for superposition is based on the analysis of inferences
between ground instances of clauses.

Inferences between ground instances must be covered by inferences between original
clauses.

Non-ground clauses represent the set of all their ground instances.

Do we really need all ground instances?

Constrained Clauses

A constrained clause is a pair (C, K), usually written as C [[K]], where C is a Σ-clause
and K is a formula (called constraint).

Often: K is a boolean combination of ordering literals s ≻ t with Σ-terms s, t.
(also possible: comparisons between literals or clauses).

Intuition: C [[K]] represents the set of all ground clauses Cθ for which Kθ evaluates
to true for some fixed term ordering. Such a Cθ is called a ground instance of C [[K]].

A clause C without constraint is identified with C [[⊤]].

A constrained clause C [[⊥]] with an unsatisfiable constraint represents no ground
instances; it can be discarded.

Constraint Superposition

Inference rules for constrained clauses:

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ [[(K2 ∧ K1 ∧ K)σ]]

where σ = mgu(t, u) and
u is not a variable and
K = (t ≻ t′ ∧ s[u] ≻ s′

∧ (t ≈ t′) ≻C D′

∧ (s[u] ≈ s′) ≻C C ′

∧ (s[u] ≈ s′) ≻L (t ≈ t′))

The other inference rules are modified analogously.

To work with effectively with constrained clauses in a calculus, we need methods to
check the satisfiability of constraints:

58



Possible for LPO, KBO, but expensive.

If constraints become too large, we may delete some conjuncts of the constraint. (Note
that the calculus remains sound, if constraints are replaced by implied constraints.)

Refutational Completeness

The refutational completeness proof for constraint superposition looks mostly like in
Sect. 3.4.

Lifting works as before, so every ground infererence that is required in the proof is an
instance of some inference from the corresponding constrained clauses. (Easy.)

There is one significant problem, though.

Case 2 in the proof of Thm. 3.9 does not work for constrained clauses:

If we have a ground instance Cθ where xθ is reducible by RCθ, we can no longer
conclude that Cθ is true because it follows from some rule in RCθ and some smaller
ground instance Cθ′.

Example: Let C [[K]] be the clause f(x) ≈ a [[x ≻ a]], let θ = {x 7→ b}, and assume
that RCθ contains the rule b → a.
Then θ satisfies K, but θ′ = {x 7→ a} does not, so Cθ′ is not a ground instance of
C [[K]].

Solution (Nieuwenhuis and Rubio, 1992):

Assumption: We start the saturation with a set N0 of unconstrained clauses; the limit
N∗ contains constrained clauses, though.

During the model construction, we ignore ground instances Cθ of clauses in N∗ for
which xθ is reducible by RCθ.

We obtain a model R∞ of all variable irreducible ground instances of clauses in N∗.

R∞ is also a model of all variable irreducible ground instances of clauses in N0.

Since all clauses in N0 are unconstrained, every ground instance of a clause in N0

follows from some rule in R∞ and some smaller ground instance; so it is true in R∞.

Consequently, R∞ is a model of all ground instances of clauses in N0.

59



Other Constraints

The approach also works for other kinds of constraints.

In particular, we can replace unification by equality constraints (; “basic superposi-
tion”):

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

D′ ∨ C ′ ∨ s[t′] ≈ s′ [[K2 ∧ K1 ∧ K]]

where u is not a variable and
K = (t = u)

Note: In contrast to ordering constraints, these constraints are essential for soundness.

The Drawback

Constraints reduce the number of required inferences; however, they are detrimental to
redundancy:

Since we consider only variable irreducible ground instances during the model con-
struction, we may use only such instances for redundancy:

A clause is redundant, if all its variable irreducible ground instances follow from
smaller variable irreducible ground instances.

Even worse, since we don’t know R∞ in advance, we must consider variable irreducibil-
ity w. r. t. arbitrary rewrite systems.

Consequence: Not every subsumed clause is redundant!

60



3.7 Hierarchic Superposition

The superposition calculus is a powerful tool to deal with formulas in uninterpreted

first-order logic.

What can we do if some symbols have a fixed interpretation?

Can we combine superposition with decision procedures, e. g., for linear rational arith-
metic? Can we integrate the decision procedure as a “black box”?

Sorted Logic

It is useful to treat this problem in sorted logic (cf. Sect. 1.8, page 29).

A many-sorted signature Σ = (Ξ, Ω, Π) fixes an alphabet of non-logical symbols, where

• Ξ is a set of sort symbols,

• Ω is a sets of function symbols,

• Π is a set of predicate symbols.

Each function symbol f ∈ Ω has a unique declaration f : ξ1 × · · · × ξn → ξ0; each
predicate symbol P ∈ Π has a unique declaration P : ξ1 × · · · × ξn with ξi ∈ Ξ.

In addition, each variable x has a unique declaration x : ξ.

We assume that all terms, atoms, substitutions are well-sorted.

A many-sorted algebra A consists of

• a non-empty set ξA for each ξ ∈ Ξ,

• a function fA : ξ1,A × · · · × ξn,A → ξ0,A for each f : ξ1 × · · · × ξn → ξ0 ∈ Ω,

• a subset PA ⊆ ξ1,A × · · · × ξn,A for each P : ξ1 × · · · × ξn ∈ Π.

Hierarchic Specifications

A specification SP = (Σ, C) consists of

• a signature Σ = (Ξ, Ω, Π),

• a class of term-generated Σ-algebras C closed under isomorphisms.

If C consists of all term-generated Σ-algebras satisfying the set of Σ-formulas N , we
write SP = (Σ, N).

61



A hierarchic specification HSP = (SP, SP ′) consists of

• a base specification SP = (Σ, C),

• an extension SP ′ = (Σ′, N ′),

where Σ = (Ξ, Ω, Π), Σ′ = (Ξ′, Ω′, Π′), Ξ ⊆ Ξ′, Ω ⊆ Ω′, and Π ⊆ Π′.

A Σ′-algebra A is called a model of HSP = (SP, SP ′), if A is a model of N ′ and A|Σ ∈ C,
where the reduct A|Σ is defined as ((ξA)ξ∈Ξ, (fA)f∈Ω, (PA)P∈Π).

Note:

• no confusion: models of HSP may not identify elements that are different in the
base models.

• no junk: models of HSP may not add new elements to the interpretations of base
sorts.

Example:

Σ = ({rat}, Ω, Π),
where Ω = { q | q ∈ Q } ∪ { q · | q ∈ Q } ∪ {+,−} and Π = {<, >,≤,≥}.

C = isomorphy class of Q.

Σ′ = ({rat, data}, Ω′, Π′),
where Ω′ = Ω ∪ {f : rat → data, g : data → rat} and Π′ = Π.

N ′ = Σ′-clauses (axioms for f and g and negated theorem to be proved).

Goal:

Check whether N ′ has a model in which the sort rat is interpreted by Q and the
symbols from Ω and Π accordingly.

Hierarchic Superposition

In order to use a prover for the base theory, we must separate the base and the non-base
part of clauses:

A clause is called abstracted, if none of its atoms contains both a base (function or
predicate) symbol and a non-base symbol.

Every clause can be transformed into an equivalent abstracted clause. From now on, we
consider only abstracted clauses.

Note: There is no restriction for base variables.

A term (or atom or clause) that consists only of base symbols and variables of base sort
is called a base term (atom, clause).

62



A substitution is called simple, if it maps every variable of a base sort to a base term.

The inference rules of the hierarchic superposition calculus correspond to the rules of of
the standard superposition calculus with the following modifications:

• We consider only simple substitutions as unifiers.

• We perform only inferences on non-base literals.

While clauses that contain non-base literals are manipulated using superposition rules,
base clauses have to be passed to the base prover.

This yields one more inference rule:

Constraint Refutation:
M

⊥

where M is a set of base clauses
that is inconsistent w. r. t. C.

Problems

We can only apply the constraint refutation rule to finite sets M . if C is not compact,
this is not sufficient.

Since we only consider simple substitutions, we will only obtain a model of all simple

ground instances.

To show that we have a model of all instances, we need an additional condition called
sufficient completeness w. r. t. simple instances.

A set N of clauses is called sufficiently complete with respect to simple instances, if for
every model A′ of the set of simple ground instances of N and every ground non-base
term t of a base sort there exists a ground base term t such that t′ ≈ t is true in A′.

Note: Sufficient completeness w. r. t. simple instances ensures the absence of junk.

Completeness of Hierarchic Superposition

If the base theory is compact, the hierarchic superposition calculus is refutationally
complete for sets of clauses that are sufficiently complete with respect to simple instances
(Bachmair, Ganzinger, Waldmann, 1992).

Main proof idea: If the set of base clauses in N has some base model, represent this model
by a set E of convergent ground equations and a set D of ground disequations. Then
show: If N is saturated w. r. t. hierarchic superposition, then E ∪ D ∪ Ñ is saturated
w. r. t. standard superposition, where Ñ is the set of simple ground instances of clauses
in N that are reduced w. r. t. E.

63


