3.5 Improvements and Refinements

The superposition calculus as described so far can be improved and refined in several
ways.

Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive (experimental evaluations are needed
to see what pays off in practice).

Often a clause can be made redundant by adding another clause that is entailed by the
existing ones.

This process is called simplification.
Examples:

Subsumption:
If N contains clauses D and C = C"V Do, where C’ is non-empty, then D subsumes
C and (' is redundant.

Example: f(z) ~ g(z) subsumes f(y) ~ a V f(h(y)) = g(h(y))-

Trivial literal elimination:
Duplicated literals and trivially false literals can be deleted: A clause C'V LV L can
be simplified to C" V L; a clause C' V s % s can be simplified to C".

Condensation:

If we obtain a clause D from C' by applying a substitution, followed by deletion of
duplicated literals, and if D subsumes C, then C' can be simplified to D.

Example: By applying {y — g(x)} to C = f(g9(z)) = aV f(y) =~ a and deleting the
duplicated literal, we obtain f(g(z)) ~ a, which subsumes C.

Semantic tautology deletion:

Every clause that is a tautology is redundant. Note that in the non-equational case,
a clause is a tautology if and only if it contains two complementary literals, whereas
in the equational case we need a congruence closure algorithm to detect that a clause
like x 2 y V f(z) = f(y) is tautological.

Rewriting:

If N contains a unit clause D = s ~ ¢ and a clause Clso], such that so > to and
C ¢ Do, then C can be simplified to Cto].

Example: If D = f(z,x) = g(z) and C = h(f(9(v),9(y))) = h(y), and > is an LPO
with h > f > g, then C can be simplified to h(g(g(y))) = h(y).

54



Selection Functions

Like the ordered resolution calculus, superposition can be used with a selection function
that overrides the ordering restrictions for negative literals.

A selection function is a mapping

S:C +— set of occurrences of negative literals in C'

We indicate selected literals by a box:

—f(z)=a|lV gx,y) =~ g(z,2)

The second ordering condition for inferences is replaced by

— The last literal in each premise is either selected, or there is no selected literal in
the premise and the literal is maximal in the premise (strictly maximal for positive
literals in superposition inferences).

In particular, clauses with selected literals can only be used in equality resolution infer-
ences and as the second premise in negative superposition inferences.

Refutational completeness is proved essentially as before:

We assume that each ground clause in Gx(N) inherits the selection of one of the
clauses in N of which it is a ground instance (there may be several ones!).

In the proof of the model construction theorem, we replace case 3 by “C# contains a
selected or maximal negative literal” and case 4 by “C' contains neither a selected
nor a maximal negative literal”.

In addition, for the induction proof of this theorem we need one more property, namely:
(iv) If CO has selected literals then Egy = 0.

Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

N is saturated up to redundancy, if the conclusion of every inference from clauses in
N\ Red(N) is contained in N U Red(N).

This definition ensures that in the proof of the model construction theorem, the conclu-
sion Cpf of a ground inference follows from clauses in Gy (V) that are smaller than or
equal to itself, hence they are smaller than the premise C'0 of the inference, hence they
are true in Ry by induction.

55



However, a closer inspection of the proof shows that it is actually sufficient that the
clauses from which Cyf follows are smaller than C'6 — it is not necessary that they are
smaller than Cyf itself. This motivates the following definition of redundant inferences:

A ground inference with conclusion Cj and right (or only) premise C' is called redundant
w.r.t. a set of ground clauses N, if one of its premises is redundant w.r.t. N, or if Cj
follows from clauses in NV that are smaller than C.

An inference is redundant w.r.t. a set of clauses N, if all its ground instances are
redundant w.r.t. Gx(N).

Recall that a clause can be redundant w.r.t. N without being contained in N. Analo-
gously, an inference can be redundant w.r.t. N without being an inference from clauses
in N.

The set of all inferences that are redundant w.r.t. IV is denoted by RedInf(N).
Saturation is then redefined in the following way:

N is saturated up to redundancy, if every inference from clauses in N is redundant
w.r.t. N.

Using this definition, the model construction theorem can be proved essentially as be-
fore.

The connection between redundant inferences and clauses is given by the following lem-
mas. They are proved in the same way as the corresponding lemmas for redundant
clauses:

Lemma 3.18 If N C N’, then RedInf(N) C RedInf(N').

Lemma 3.19 If N’ C Red(N), then RedInf(N) C RedInf(N \ N').

Splitting

Motivation:

A clause like f(x) = a V ¢(y) = b has rather undesirable properties in the superposi-
tion calculus: It does not have negative literals that one could select; it does not have
a unique maximal literal; moreover, after performing a superposition inference with
this clause, the conclusion often does not have a unique maximal literal either.

On the other hand, the two unit clauses f(x) = a and g(y) = b have much nicer
properties.

56



If a clause VZ,y C1(Z) V Co(y) consists of two non-empty variable-disjoint subclauses,
then it is equivalent to the disjunction (VZ C1(Z)) V (V§ Ca()).

In this case, superposition derivations can branch in a tableau-like manner:
NUA{C; Vv Cs}
NU{C} | NU{Cy}

where C; and Cy do not have common variables.

Splitting:

If 1 is found on the left branch, backtrack to the right one.
If ¢y is ground, the general rule can be improved:
NUA{C, Vv Cy}

NU{C} | NUA{Cy} U{=Cy}
where (] is ground.

Splitting:

Note: —(C; denotes the conjunction of all negations of literals in C}.

In practice, splitting is most useful if both split clauses contain at least one positive
literal.

Implementing splitting:
Most clauses that are derived after a splitting step do not depend on the split clause.

It is unpractical to delete them as soon as one branch is closed and to recompute them
in the other branch afterwards.

Solution: Associate labels to clauses that indicate on which splits they depend.
If we derive L in one branch:

Backtrack to the corresponding right branch.

Keep those clauses that are still valid on the right branch.

Restore clauses that have been simplified if the simplifying clause is no longer valid
on the right branch.

Additionally: Delete splittings that did not contribute to the contradiction (branch
condensation).

o7



