
2.2 Heuristic Instantiation

DPLL(T) is limited to ground (or existentially quantified) formulas. Even if we have
decidability for more than the ground fragment of a theory T , we cannot use this in
DPLL(T).

Most current SMT implementations offer a limited support for universally quantified
formulas by heuristic instantiation.

Goal:

Create potentially useful ground instances of universally quantified clauses and add
them to the given ground clauses.

Idea (Detlefs, Nelson, Saxe: Simplify):

Select subset of the terms (or atoms) in ∀~xC as “trigger” (automatically, but can be
overridden manually).

If there is a ground instance Cθ of ∀~x C such that tθ occurs (modulo congruence) in
the current set of ground clauses for every t ∈ trigger(C), add Cθ to the set of ground
clauses (incrementally).

Conditions for trigger terms (or atoms):

(1) Every quantified variable of the clause occurs in some trigger term (therefore more
than one trigger term may be necessary).

(2) A trigger term is not a variable itself.

(3) A trigger is not explicitly forbidden by the user.

(4) There is no larger instance of the term in the formula:
(If f(x) were selected as a trigger in ∀xP (f(x), f(g(x))), a ground term f(a)
would produce an instance P (f(a), f(g(a))), which would produce an instance
P (f(g(a)), f(g(g(a)))), and so on.)

(5) No proper subterm satisfies (1)–(4).

Also possible (but expensive, therefore only in restricted form): Theory matching

The ground atom P (a) is not an instance of the trigger atom P (x + 1); it is however
equivalent (in linear algebra) to P ((a− 1) + 1), which is an instance and may therefore
produce a new ground clause.

Heuristic instantiation is obviuosly incomplete

e. g., it does not find the contradiction for f(x, a) ≈ x, f(b, y) ≈ b, a 6≈ b

but it is quite useful in practice:

modern implementations: CVC, Yices, Z3.
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2.3 Local Theory Extensions

Under certain circumstances, instantiating universally quantified variables with “known”
ground terms is sufficient for completeness.

Scenario:

Σ0 = (Ω0, Π0): base signature;
T0: Σ0-theory.

Σ1 = (Ω0 ∪ Ω1, Π0): signature extension;
K: universally quantified Σ1-clauses;
G: ground clauses.

Assumption: clauses in G are Σ1-flat and Σ1-linear:

only constants as arguments of Ω1-symbols,

if a constant occurs in two terms below a Ω1-symbol, then the two terms are identical,

no term contains the same constant twice below below a Ω1-symbol.

Example: Monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f/1}.
K = { ∀x, y (¬x ≤ y ∨ f(x) ≤ f(y)) }.

G = { f(3) ≥ 6, f(5) ≤ 9 }.

Observation: If we choose interpretations for f(3) and f(5) that satisfy the G and
monotonicity axiom, then it is always possible to define f for all remaining integers
such that the monotonicity axiom is satisfied.

Example: Strictly monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f/1}.
K = { ∀x, y (¬x < y ∨ f(x) < f(y)) }.

G = { f(3) > 6, f(5) < 9 }.

Observation: Even though we can choose interpretations for f(3) and f(5) that satisfy
G and the strict monotonicity axiom (map f(3) to 7 and f(5) to 8), we cannot define
f(4) such that the strict monotonicity axiom is satisfied.

To formalize the idea, we need partial algebras:

like (usual) total algebras, but fA may be a partial function.
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There are several ways to define equality in partial algebras (strong equality, Evans
equality, weak equality, etc.). Here we use weak equality:

an equation s ≈ t holds w. r. t. A and β if both A(β)(s) and A(β)(t) are defined and
equal or if at least one of them is undefined;

a negated equation s 6≈ t holds w. r. t. A and β if both A(β)(s) and A(β)(t) are defined
and different or if at least one of them is undefined.

If a partial algebra A satisfies a set of formulas N w. r. t. weak equality, it is called a
weak partial model of N .

A partial algebra A embeds weakly into a partial algebra B if there is an injective total
mapping h : UA → UB such that if fA(a1, . . . , an

) is defined in A then fB(h(a1), . . . , h(a
n
))

is defined in B and equal to h(fA(a1, . . . , an
)).

A theory extension T0 ⊆ T0 ∪K is called local, if for every set G, T0 ∪K ∪G is satisfiable
if and only if T0 ∪K[G]∪G has no (partial) model, where K[G] is the set of instances of
clauses in K in which all terms starting with an Ω1-symbol are ground terms occurring
in K or G.

If every weak partial model of T0 ∪ K can be embedded into a a total model, then the
theory extension T0 ⊆ T0 ∪ K is local (Sofronie-Stokkermans 2005).

Note: There are many variants of partial models and embeddings corresponding to
different kinds of locality.

Examples of local theory extensions:

free functions

constructors/selectors

monotonic functions

Lipschitz functions.
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