2.2 Heuristic Instantiation

DPLL(T) is limited to ground (or existentially quantified) formulas. Even if we have decidability for more than the ground fragment of a theory \mathcal{T} , we cannot use this in DPLL(T).

Most current SMT implementations offer a limited support for universally quantified formulas by heuristic instantiation.

Goal:

Create potentially useful ground instances of universally quantified clauses and add them to the given ground clauses.

Idea (Detlefs, Nelson, Saxe: Simplify):

Select subset of the terms (or atoms) in $\forall \vec{x} C$ as "trigger" (automatically, but can be overridden manually).

If there is a ground instance $C\theta$ of $\forall \vec{x} C$ such that $t\theta$ occurs (modulo congruence) in the current set of ground clauses for every $t \in trigger(C)$, add $C\theta$ to the set of ground clauses (incrementally).

Conditions for trigger terms (or atoms):

- (1) Every quantified variable of the clause occurs in some trigger term (therefore more than one trigger term may be necessary).
- (2) A trigger term is not a variable itself.
- (3) A trigger is not explicitly forbidden by the user.
- (4) There is no larger instance of the term in the formula: (If f(x) were selected as a trigger in $\forall x P(f(x), f(g(x)))$), a ground term f(a)would produce an instance P(f(a), f(g(a))), which would produce an instance P(f(g(a)), f(g(g(a)))), and so on.)
- (5) No proper subterm satisfies (1)-(4).

Also possible (but expensive, therefore only in restricted form): Theory matching

The ground atom P(a) is not an instance of the trigger atom P(x + 1); it is however equivalent (in linear algebra) to P((a - 1) + 1), which is an instance and may therefore produce a new ground clause.

Heuristic instantiation is obviuosly incomplete

e.g., it does not find the contradiction for $f(x, a) \approx x$, $f(b, y) \approx b$, $a \not\approx b$

but it is quite useful in practice:

modern implementations: CVC, Yices, Z3.

2.3 Local Theory Extensions

Under certain circumstances, instantiating universally quantified variables with "known" ground terms is sufficient for completeness.

Scenario:

$$\begin{split} \Sigma_0 &= (\Omega_0, \Pi_0): \text{ base signature;} \\ \mathcal{T}_0: \ \Sigma_0\text{-theory.} \\ \Sigma_1 &= (\Omega_0 \cup \Omega_1, \Pi_0): \text{ signature extension;} \\ K: \text{ universally quantified } \Sigma_1\text{-clauses;} \\ G: \text{ ground clauses.} \end{split}$$

Assumption: clauses in G are Σ_1 -flat and Σ_1 -linear:

only constants as arguments of Ω_1 -symbols,

if a constant occurs in two terms below a Ω_1 -symbol, then the two terms are identical,

no term contains the same constant twice below below a Ω_1 -symbol.

Example: Monotonic functions over \mathbb{Z} .

 \mathcal{T}_0 : Linear integer arithmetic.

$$\Omega_1 = \{ f/1 \}.$$

$$K = \{ \forall x, y \ (\neg x \le y \lor f(x) \le f(y)) \}.$$

$$G = \{ f(3) \ge 6, f(5) \le 9 \}.$$

Observation: If we choose interpretations for f(3) and f(5) that satisfy the G and monotonicity axiom, then it is always possible to define f for all remaining integers such that the monotonicity axiom is satisfied.

Example: Strictly monotonic functions over \mathbb{Z} .

 \mathcal{T}_0 : Linear integer arithmetic.

$$\Omega_1 = \{ f/1 \}.$$

$$K = \{ \forall x, y \ (\neg x < y \lor f(x) < f(y)) \}.$$

$$G = \{ f(3) > 6, f(5) < 9 \}.$$

Observation: Even though we can choose interpretations for f(3) and f(5) that satisfy G and the strict monotonicity axiom (map f(3) to 7 and f(5) to 8), we cannot define f(4) such that the strict monotonicity axiom is satisfied.

To formalize the idea, we need partial algebras:

like (usual) total algebras, but $f_{\mathcal{A}}$ may be a partial function.

There are several ways to define equality in partial algebras (strong equality, Evans equality, weak equality, etc.). Here we use weak equality:

- an equation $s \approx t$ holds w.r.t. \mathcal{A} and β if both $\mathcal{A}(\beta)(s)$ and $\mathcal{A}(\beta)(t)$ are defined and equal or if at least one of them is undefined;
- a negated equation $s \not\approx t$ holds w.r.t. \mathcal{A} and β if both $\mathcal{A}(\beta)(s)$ and $\mathcal{A}(\beta)(t)$ are defined and different or if at least one of them is undefined.

If a partial algebra \mathcal{A} satisfies a set of formulas N w.r.t. weak equality, it is called a weak partial model of N.

A partial algebra \mathcal{A} embeds weakly into a partial algebra \mathcal{B} if there is an injective total mapping $h: U_{\mathcal{A}} \to U_{\mathcal{B}}$ such that if $f_{\mathcal{A}}(a_1, \ldots, a_n)$ is defined in \mathcal{A} then $f_{\mathcal{B}}(h(a_1), \ldots, h(a_n))$ is defined in \mathcal{B} and equal to $h(f_{\mathcal{A}}(a_1, \ldots, a_n))$.

A theory extension $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup K$ is called *local*, if for every set G, $\mathcal{T}_0 \cup K \cup G$ is satisfiable if and only if $\mathcal{T}_0 \cup K[G] \cup G$ has no (partial) model, where K[G] is the set of instances of clauses in K in which all terms starting with an Ω_1 -symbol are ground terms occurring in K or G.

If every weak partial model of $\mathcal{T}_0 \cup K$ can be embedded into a a total model, then the theory extension $\mathcal{T}_0 \subseteq \mathcal{T}_0 \cup K$ is local (Sofronie-Stokkermans 2005).

Note: There are many variants of partial models and embeddings corresponding to different kinds of locality.

Examples of local theory extensions:

- free functions
- constructors/selectors
- monotonic functions

Lipschitz functions.