2 Satisfiability Modulo Theories (SMT)

So far:

decision procedures for satisfiability for various fragments of first-order theories; often only for ground conjunctions of literals.

Goals:

extend decision procedures efficiently to ground CNF formulas;

later: extend to non-ground formulas (we will often lose completeness, however).

2.1 The DPLL(T) Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N of clauses), where the atoms represent ground formulas over some theory \mathcal{T} , check whether it is satisfiable in \mathcal{T} (and optionally: output one solution, if it is satisfiable).

Assumption:

As in the propositional case, clauses contain neither duplicated literals nor complementary literals.

For propositional DPLL, we have considered partial valuations, i.e., partial mappings from propositional variables to truth values.

A partial valuation \mathcal{A} corresponds to a set M of literals that does not contain complementary literals, and vice versa:

- $\mathcal{A}(L)$ is true, if $L \in M$.
- $\mathcal{A}(L)$ is false, if $\overline{L} \in M$.
- $\mathcal{A}(L)$ is undefined, if neither $L \in M$ nor $\overline{L} \in M$.

We will now consider partial mappings from ground \mathcal{T} -atoms to truth values (which correspond to sets of \mathcal{T} -literals).

In order to check whether a (partial) valuation is permissible, we identify the valuation \mathcal{A} or the set M with the conjunction of all literals in M:

The valuation \mathcal{A} or the set M is called \mathcal{T} -satisfiable, if the literals in M have a \mathcal{T} -model.

Since the elements of M can be interpreted both as propositional variables and as ground \mathcal{T} -formulas, we have to distinguish between two notions of entailment:

We write $M \models F$ if F is entailed by M propositionally. We write $M \models_{\mathcal{T}} F$ if the ground \mathcal{T} -formulas represented by M entail F.

M is called a \mathcal{T} -model of F, if it is \mathcal{T} -satisfiable and $M \models F$.

We write $F \models_{\mathcal{T}} G$, if the formula F entails G w.r.t. \mathcal{T} , that is, if every \mathcal{T} -model of F is also a model of G.

Idea

Naive Approach:

Use DPLL to find a propositionally satisfying valuation.

If the valuation found is \mathcal{T} -satisfiable, stop; otherwise continue DPLL search.

Note: The DPLL procedure may not use "pure literal" checks.

Improvements:

Check already partial valuations for \mathcal{T} -satisfiability.

If \mathcal{T} -decision procedure yields explanations, use them for non-chronological backjumping.

If \mathcal{T} -decision procedure can provide \mathcal{T} -entailed literals, use them for propagation.

Since \mathcal{T} -satisfiability checks may be costly, learn clauses that incorporate useful \mathcal{T} -knowledge, in particular explanations for backjumping. (The procedure is also called CDCL, i.e., "conflict-driven clause learning".)

DPLL(T)

The "DPLL Modulo Theories" procedure is modelled by a transition relation $\Rightarrow_{\mathrm{DPLL}(\mathcal{T})}$ on a set of states.

States:

- fail
- \bullet $M \parallel N$,

where M is a list of annotated literals and N is a set of clauses.

Annotated literal:

- L: deduced literal, due to unit propagation.
- L^d: decision literal (guessed literal).

DPLL(T) Rules from DPLL

Unit Propagate:

$$M \parallel N \cup \{C \vee L\} \ \Rightarrow_{\mathrm{DPLL}(T)} \ M \ L \parallel N \cup \{C \vee L\}$$

if C is false under M and L is undefined under M.

Decide:

$$M \parallel N \ \Rightarrow_{\mathrm{DPLL}(\mathcal{T})} \ M \ L^{\mathrm{d}} \parallel N$$

if L is undefined under M.

Fail:

$$M \parallel N \cup \{C\} \Rightarrow_{\mathrm{DPLL}(\mathcal{T})} fail$$

if C is false under M and M contains no decision literals.

Specific DPLL(T) Rules

 \mathcal{T} -Backjump:

$$M L^{d} M' \parallel N \Rightarrow_{DPLL(\mathcal{T})} M L' \parallel N$$

if
$$M L^{\operatorname{d}} M' \models \neg C$$
 for some $C \in N$

and if there is some "backjump clause" $C' \vee L'$ such that

$$N \models_{\mathcal{T}} C' \vee L' \text{ and } M \models \neg C',$$

L' is undefined under M, and

L' or $\overline{L'}$ occurs in N or in M L^{d} M'.

 \mathcal{T} -Learn:

$$M \parallel N \ \Rightarrow_{\mathrm{DPLL}(\mathcal{T})} \ M \parallel N \cup \{C\}$$

if $N \models_{\mathcal{T}} C$ and each atom of C occurs in N or M.

 $\mathcal{T} ext{-Forget}$:

$$M \parallel N \cup \{C\} \Rightarrow_{\mathrm{DPLL}(T)} M \parallel N$$

if
$$N \models_{\mathcal{T}} C$$
.

 \mathcal{T} -Propagate:

$$M \parallel N \Rightarrow_{\mathrm{DPLL}(\mathcal{T})} M L \parallel N$$

if $M \models_{\mathcal{T}} L$ where L is undefined in M, and L or \overline{L} occurs in N.

DPLL(T) Properties

The system $DPLL(\mathcal{T})$ consists of the rules Decide, Fail, Unit Propagate, \mathcal{T} -Propagate, \mathcal{T} -Backjump, \mathcal{T} -Learn and \mathcal{T} -Forget.

Lemma 2.1 If we reach a state $M \parallel N$ starting from $\emptyset \parallel N$, then:

- (1) M does not contain complementary literals.
- (2) Every deduced literal L in M follows from \mathcal{T} , N and decision literals occurring before L in M.

Proof. By induction on the length of the derivation.

Lemma 2.2 If no clause is learned infinitely often, then every derivation starting from $\emptyset \parallel N$ terminates.

Proof. Similar to the propositional case.

Lemma 2.3 If $\emptyset \parallel N \Rightarrow_{\mathrm{DPLL}(\mathcal{T})}^* M \parallel N'$ and there is some conflicting clause in $M \parallel N'$, that is, $M \models \neg C$ for some clause C in N, then either Fail or \mathcal{T} -Backjump applies to $M \parallel N'$.

Proof. Similar to the propositional case.

Lemma 2.4 If $\emptyset \parallel N \Rightarrow_{\mathrm{DPLL}(\mathcal{T})}^* M \parallel N'$ and M is \mathcal{T} -unsatisfiable, then either there is a conflicting clause in $M \parallel N'$, or else \mathcal{T} -Learn applies to $M \parallel N'$, generating a conflicting clause.

Proof. If M is \mathcal{T} -unsatisfiable, then there exists a subsequence (L_1, \ldots, L_n) of M such that $\emptyset \models_{\mathcal{T}} \overline{L_1} \vee \ldots \vee \overline{L_n}$. Hence the conflicting clause $\overline{L_1} \vee \ldots \vee \overline{L_n}$ is either in $M \parallel N'$, or else it can be learned by one \mathcal{T} -Learn step.

Theorem 2.5 Consider a derivation $\emptyset \parallel N \Rightarrow_{\mathrm{DPLL}(\mathcal{T})}^* S$, where no more rules of the $\mathrm{DPLL}(T)$ procedure are applicable to S except \mathcal{T} -Learn or \mathcal{T} -Forget, and if S has the form $M \parallel N'$ then M is \mathcal{T} -satisfiable. Then

- (1) S is fail iff N is \mathcal{T} -unsatisfiable.
- (2) If S has the form $M \parallel N'$, then M is a \mathcal{T} -model of N.

The Solver Interface

The general DPLL(\mathcal{T}) procedure has to be connected to a "Solver" for \mathcal{T} , a theory module that performs at least \mathcal{T} -satisfiability checks.

The solver is initialized with a list of all literals occurring in the input of the $\mathrm{DPLL}(\mathcal{T})$ procedure.

Internally, it keeps a stack I of theory literals that is initially empty. The solver performs the following operations on I:

SetTrue(L: \mathcal{T} -Literal):

Check whether $I \cup \{L\}$ is consistent.

If no: return an explanation for \overline{L} , that is, a subset J of I such that $J \models_{\mathcal{T}} \overline{L}$.

If yes: push L on I.

Optionally: Return a list of literals that are \mathcal{T} -consequences of $I \cup \{L\}$ (and have not yet been detected before).

Note: Depending on \mathcal{T} , detecting (all) \mathcal{T} -consequences may be very cheap or very expensive.

Backtrack($n: \mathbb{N}$):

Pop n literals from I.

Explanation(L: \mathcal{T} -Literal):

Return an explanation for L, that is, a subset J of I such that $J \models_{\mathcal{T}} L$.

We assume that L has been returned previously as a result of some SetTrue(L') operation. No literal of J may occur in I after L'.