
The Nelson–Oppen Algorithm (Deterministic Version for Convex Theories)

Unsat:

F1, F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i.

Propagate:

F1, F2

F1 ∧ (x ≈ y), F2 ∧ (x ≈ y)

if x and y are two different variables appearing in
both F1 and F2 such that
T1 |= ∀~x (F1 → x ≈ y) and T2 6|= ∀~x (F2 → x ≈ y)
or T2 |= ∀~x (F2 → x ≈ y) and T1 6|= ∀~x (F1 → x ≈ y).

Theorem 1.8 If T1 and T2 are signature-disjoint theories that are convex w. r. t. equa-
tions and have no trivial models, then the deterministic Nelson–Oppen algorithm is
terminating, sound and complete for deciding satisfiability of pure conjunctions of liter-
als F1 and F2 over T1 ∪ T2.

Proof. Termination and soundness are obvious: there are only finitely many different
equations that can be added, and each of them is entailed by given formulas.

For completeness, we have to show that every configuration that is irreducible by “Unsat”
and “Propagate” is satisfiable w. r. t.. T1 ∪ T2: Let F1, F2 be such a configuration. As it is
irreducible by “Propagate”, we have, for every equation x ≈ y between shared variables,
T1 |= ∀~x (F1 → x ≈ y) if and only if T2 |= ∀~x (F2 → x ≈ y). Consequently, F1 and F2 are
compatible with the same equivalence on the shared variables of F1 and F2. Moreover,
each of the formulas Fi is Ti-satisfiable, and since convexity implies stable infiniteness, Fi

has a Ti-model with a countably infinite universe. Hence, by the amalgamation lemma,
F1 ∧ F2 is (T1 ∪ T2)-satisfiable.

Corollary 1.9 The deterministic Nelson–Oppen algorithm for convex theories requires
at most O(n3) calls to the individual decision procedures for the component theories,
where n is the number of shared variables.

Iterating Nelson–Oppen

The Nelson–Oppen combination procedures can be iterated to work with more than two
component theories by virtue of the following observations where signature disjointness
is assumed:
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Theorem 1.10 If T1 and T2 are stably infinite, then so is T1 ∪ T2.

Proof. The non-deterministic Nelson–Oppen algorithm is sound and complete for T1 ∪
T2, that is, an existentially quantified conjunction F over Σ1 ∪ Σ2 is satisfiable if and
only if in every derivation from the purified form of F there exists a branch leading to
some irreducible constraint F1, F2 entailing F . The amalgamation lemma 1.4 constructs
a model of cardinality ω for F from the models of F1 and F2.

Lemma 1.11 A first-order theory T is convex w. r. t. equations if and ony if for every
conjunction Γ of Σ-equations and non-equational Σ-literals and for all equations xi ≈ x′

i

(1 ≤ i ≤ n), whenever T |= ∀~x (Γ → x1 ≈ x′
1 ∨ . . . ∨ xn ≈ x′

n), then there exists some
index j such that T |= ∀~x (Γ → xj ≈ x′

j).

Lemma 1.12 Let T be a first-order theory that is convex w. r. t. equations and and has
no trivial models. Let F is a conjunction of literals; let F− be the conjunction of all
negative equational literals in F and let F+ be the conjunction of all remaining literals
in F . If T |= ∀~x (F → x ≈ y), then ∃~xF is T -unsatisfiable or T |= ∀~x (F+ → x ≈ y).

Proof. T |= ∀~x (F → x ≈ y) is equivalent to T |= ∀~x (F+ → (¬F− ∨ x ≈ y)). By
convexity of T we know that T |= ∀~x (F+ → x ≈ y) or T |= ∀~x (F+ → A) for some
literal ¬A in F−. In the latter case, ∃~x (F+ ∧ ¬A) is T -unsatisfiable; hence ∃~x F , that
is, ∃~x (F+ ∧ F−) is T -unsatisfiable as well.

Theorem 1.13 If T1 and T2 are convex w. r. t. equations and do not have trivial models,
then so is T1 ∪ T2.

Proof. Suppose that T1 and T2 are convex w. r. t. equations and do not have trivial
models. Assume furthermore that T |= ∀~x (Γ → x1 ≈ x′

1 ∨ . . . ∨ xn ≈ x′
n) for some

conjunction Γ of (Σ1 ∪ Σ2)-literals. Then ∃~x (Γ ∧ x1 6≈ x′
1 ∧ . . . ∧ xn 6≈ x′

n) is T -
unsatisfiable, and we can detect this by some run of the deterministic Nelson–Oppen
algorithm starting with ∃~x, ~y (Γ1 ∧ Γ2 ∧ x1 6≈ x′

1 ∧ . . . ∧ xn 6≈ x′
n), where Γ1 ∧ Γ2 is the

result of purifying Γ. This run consists of a sequence of “Propagate” steps followed by
a final “Unsat” step, and without loss of generality, we use the “Propagate” rule only if
“Unsat” cannot be applied. Consequently, whenever we add an equation x ≈ y that is
entailed by F1 w. r. t. T1 or by F2 w. r. t. T2, then it is already entailed by the positive
and the non-equational literals in F1 or F2. Furthermore, due to the convexity of T1 and
T2, the final “Unsat” step depends on at most one negative equational literal in F1 or F2.
We can therefore construct a similar Nelson–Oppen derivation that starts with only the
positive and the non-equational literals in Γ1 and Γ2, plus the one negative equational
literal that may be needed for the “Unsat” step. If this negative equational literal is one
of the xj 6≈ x′

j , then ∃~x (Γ∧ xj 6≈ x′
j) is T -unsatisfiable and ∀~x (Γ → xj ≈ x′

j) is T -valid;
if the negative equational literal is a literal from Γ or if no negative equational literal is
needed at all, then ∃~x Γ is T -unsatisfiable, so ∀~x (Γ → xj ≈ x′

j) is T -valid for every j.
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Extensions

Many-sorted logics:

read/2 becomes read : array × int → data.
write/3 becomes write : array × int × data → array.
Variables: x : data

Only one declaration per function/predicate/variable symbol.
All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, intA.

Interpretations of function and predicate symbols correspond to their declarations:
readA : arrayA × intA → dataA

If we consider combinations of theories with shared sorts but disjoint function and pred-
icate symbols, then we get essentially the same combination results as before.

However, stable infiniteness and/or convexity are only required for the shared sorts.

Non-stably infinite theories:

If we impose stronger conditions on one theory, we can relax the conditions on the
other one.

For instance, EUF can be combined with any other theory; stable infiniteness is not
required.

Other examples: “shiny theories” (Tinelli/Zarba 2003)

Non-disjoint combinations:

Have to ensure that both decision procedures interpret shared symbols in a compatible
way.

Some results, e. g. by Ghilardi, using strong model theoretical conditions on the the-
ories.

29



Another Combination Method

Shostak’s method:

Applicable to combinations of EUF and solvable theories.

A Σ-theory T is called solvable, if there exists an effectively computable function solve

such that, for any T -equation s ≈ t:

(A) solve(s ≈ t) = ⊥ if and only if T |= ∀~x (s 6≈ t);

(B) solve(s ≈ t) = ∅ if and only if T |= ∀~x (s ≈ t); and otherwise

(C) solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un}, where

– the xi are pairwise different variables occurring in s ≈ t;

– the xi do not occur in the uj; and

– T |= ∀~x ((s ≈ t) ↔ ∃~y (x1 ≈ u1 ∧ . . . ∧ xn ≈ un)), where ~y are the variables
occurring in one of the uj but not in s ≈ t, and ~x ∩ ~y = ∅.

Additionally useful (but not required):

A canonizer, that is, a function that simplifies terms by computing some unique normal
form

Main idea of the procedure:

If s ≈ t is a positive equation and solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un}, replace
s ≈ t by x1 ≈ u1 ∧ . . .∧ xn ≈ un and use these equations to eliminate the xi elsewhere.

Practical problem:

Solvability is a rather restrictive condition.
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