2 Satisfiability Modulo Theories (SMT)

So far:
decision procedures for satisfiability for various fragments of first-order theories;
often only for ground conjunctions of literals.

Goals:
extend decision procedures efficiently to ground CNF formulas;

later: extend to non-ground formulas (we will often lose completeness, however).

2.1 The CDCL(T) Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N of clauses),
where the atoms represent ground formulas over some theory 7, check whether it is
satisfiable in 7 (and optionally: output one solution, if it is satisfiable).

Assumption:

As in the propositional case, clauses contain neither duplicated literals nor comple-
mentary literals.

For propositional CDCL (“Conflict-Driven Clause Learning” ), we have considered partial
valuations, i.e., partial mappings from propositional variables to truth values.

A partial valuation A corresponds to a set M of literals that does not contain comple-
mentary literals, and vice versa:

A(L) is true, if L € M.
A(L) is false, if L € M.
A(L) is undefined, if neither L € M nor L € M.

We will now consider partial mappings from ground 7-atoms to truth values (which
correspond to sets of T-literals).

In order to check whether a (partial) valuation is permissible, we identify the valuation
A or the set M with the conjunction of all literals in M:

The valuation A or the set M is called T-satisfiable, if the literals in M have a T-
model.

Since the elements of M can be interpreted both as propositional variables and as ground
T-formulas, we have to distinguish between two notions of entailment:
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We write M |= F' if F is entailed by M propositionally. We write M =7 F if the ground
T-formulas represented by M entail F.

M is called a T-model of F, if it is T-satisfiable and M = F.

We write F' =7 G, if the formula F' entails G w.r.t. T, that is, if every T-model of F'
is also a model of G.

Idea

Naive Approach:
Use CDCL to find a propositionally satisfying valuation.
If the valuation found is T -satisfiable, stop; otherwise continue CDCL search.
Note: The CDCL procedure may not use “pure literal” checks.
Improvements:
Check already partial valuations for 7T -satisfiability.

If T-decision procedure yields explanations, use them for non-chronological backjump-
ing.

If T-decision procedure can provide 7T -entailed literals, use them for propagation.

Since T -satisfiability checks may be costly, learn clauses that incorporate useful 7 -
knowledge, in particular explanations for backjumping.

CDCL(T)
The “CDCL Modulo Theories” procedure is modelled by a transition relation =cpcr(7)
on a set of states.
States:
o fail
o« M| N,
where M is a list of annotated literals (“trail”) and N is a set of clauses.
Annotated literal:
e [: deduced literal, due to propagation.

o [4: decision literal (guessed literal).
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CDCL(T) Rules from CDCL

Unit Propagate:
M| NU{CVL} =cpcry ML|NU{CVL}
if C is false under M and L is undefined under M.
Decide:
M| N =cpery M LY N
if L is undefined under M.
Fail:
M || NU{C} =cpoyr) fail

if C' is false under M and M contains no decision literals.

Specific CDCL(T) Rules

T-Learn:

M |[N =cpeur M || NU{C}

if N =7 C and each atom of C' occurs in N or M.
T-Forget:

M || NU{C} =cpcuery M| N

it N =7 C.
T-Propagate:

M||N =cpcyy ML|IN

if M =7 L where L is undefined in M, and L or L occurs in N.
T-Backjump:

M LY M" || N =cpeyry M'L'|| N

if M' LYM" = ~C for some C € N

and if there is some “backjump clause” C’V L’ such that
NE+C'VL and M' = =(C’,

L' is undefined under M’, and

L' or I occurs in N or in M’ L4 M".
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Note: We don’t need a special rule to handle the case that M’ L M” =1 L. If the trail
contains a 7T-inconsistent subset, we can always add the negation of that subset using
T-Learn and apply 7T-Backjump afterwards.

CDCL(T) Properties

The system CDCL(T) consists of the rules Decide, Fail, Unit Propagate, T-Propagate,
T-Backjump, T-Learn and 7 -Forget.

Lemma 2.1 If we reach a state M || N starting from () | N, then:
(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from T, N, and decision literals occurring
before L in M.

Proof. By induction on the length of the derivation. O

Lemma 2.2 If no clause is learned infinitely often, then every derivation starting from
0 || N terminates.

Proof. Similar to the propositional case.

Lemma 2.3 If () || N =tporey M || N’ and there is some conflicting clause in
M || N', that is, M |= —C for some clause C' in N', then either Fail or T-Backjump
applies to M || N'.

Proof. Similar to the propositional case. O

Lemma 2.4 If § | N ={pepqy M | N' and M is T-unsatisfiable, then either there
is a conflicting clause in M || N’, or else T-Learn applies to M || N’, generating a
conflicting clause.

Proof. If M is T-unsatisfiable, then there are literals Ly, ..., L, in M such that §) =7
Ly V...V L,. Hence the conflicting clause L V ...V L, is either in M || N, or else it
can be learned by one T-Learn step. O
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Theorem 2.5 Consider a derivation 0 || N ={pep iy S, where no more rules of the
CDCL(T) procedure are applicable to S except T-Learn or T -Forget, and if S has the
form M || N' then M is T -satisfiable. Then

(1) If S has the form M || N', then M is a T-model of N and N'.
(2) If S is fail then N and N’ are T -unsatisfiable.

Proof. (1) Observe that the “Decide” rule is applicable as long as there are undefined
literals in the clause set. Hence all literals in N/ must be defined. Furthermore no clause
in N’ can be false under M, otherwise “Fail” or “Backjump” would be applicable. So
M is a T-model of every clause in N’. Moreover, the side conditions of “7-Learn” and
“T-Forget” ensure that N’ =7 N, therefore M is also a 7T-model of every clause in N.

(2) If we reach fail, then in the previous step we must have reached a state M || N’
such that some clause C' € N’ is false under M and M contains no decision literals.
By part (2) of Lemma 2.1, every literal L in M follows from 7 and N. On the other
hand, we have C € N’, and the side conditions of “T-Learn” and “7-Forget” ensure

that N =7 N and N’ |=r N. Therefore N =7 C. So N and N’ must be T-unsatisfiable.
]
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The Solver Interface
The general CDCL(T) procedure has to be connected to a “Solver” for T, a theory
module that performs at least T-satisfiability checks.

The solver is initialized with a list of all literals occurring in the input of the CDCL(T)
procedure.

Internally, it keeps a stack I of theory literals that is initially empty. The solver performs
the following operations on I:

SetTrue(L: T-Literal):
Check whether I U {L} is T-satisfiable.
If no: return an explanation for L, that is, a subset J of I such that J =7 L.
If yes: push L on I.

Optionally: Return a list of literals that are T-consequences of I U {L} (and have not
yet been detected before).

Note: Depending on 7, detecting (all) T-consequences may be very cheap or very
expensive.

Backtrack(n: N):
Pop n literals from 1.
Explanation(L: T-Literal):
Return an explanation for L, that is, a subset J of I such that J =+ L.

We assume that L has been returned previously as a result of some SetTrue(L') op-
eration. No literal of J may occur in [ after L'.

Computing Backjump Clauses

Backjump clauses for a conflict can then be computed as in the propositional case:
Start with the conflicting clause.

Resolve with the clauses used for Unit Propagate or the explanations produced by the
solver until a backjump clause (or L) is found.
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2.2 Heuristic Instantiation

CDCL(T) is limited to ground (or existentially quantified) formulas. Even if we have
decidability for more than the ground fragment of a theory 7, we cannot use this in
CDCL(T).

Most current SMT implementations offer a limited support for universally quantified
formulas by heuristic instantiation.

Goal:

Create potentially useful ground instances of universally quantified clauses and add
them to the given ground clauses.

Idea (Detlefs, Nelson, Saxe: Simplify):

Select subset of the terms (or atoms) in VZ C' as “trigger” (automatically, but can be
overridden manually).

If there is a ground instance C8 of VZ C' such that t6 occurs (modulo congruence) in
the current set of ground clauses for every t € trigger(C), add C6 to the set of ground
clauses (incrementally).

Conditions for trigger terms (or atoms):

(1) Every quantified variable of the clause occurs in some trigger term (therefore more
than one trigger term may be necessary).

(2) A trigger term is not a variable itself.
(3) A trigger is not explicitly forbidden by the user.

(4) There is no larger instance of the term in the formula:
(If f(x) were selected as a trigger in Vx P(f(x), f(g(x))), a ground term f(a)
would produce an instance P(f(a), f(g(a))), which would produce an instance

P(f(g(a)), f(g(g(a)))), and so on.)
(5) No proper subterm satisfies (1)—(4).
Also possible (but expensive, therefore only in restricted form): Theory matching

The ground atom P(a) is not an instance of the trigger atom P(z + 1); it is however
equivalent (in linear algebra) to P((a — 1) + 1), which is an instance and may therefore
produce a new ground clause.

Heuristic instantiation is obviously incomplete
e.g., it does not find the contradiction for f(x,a) ~ z, f(b,y) =y, a % b
but it is quite useful in practice:

modern implementations: CVC, Yices, Z3.
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2.3 Local Theory Extensions

Under certain circumstances, instantiating universally quantified variables with “known”
ground terms is sufficient for completeness.

Scenario:

Yo = (Qo,I1p): base signature;
To: Xo-theory.

Y1 = (20U, II): signature extension;
K: universally quantified >;-clauses;
G': ground clauses.

Assumption: clauses in G are ¥;-flat and X;-linear:
only constants as arguments of €2;-symbols,
if a constant occurs in two terms below an {2;-symbol, then the two terms are identical,
no term contains the same constant twice below an €2;-symbol.

Example: Monotonic functions over Z.

To: Linear integer arithmetic.

O = {f/1}.
K={Vz,y (~z<yV f(z) < f(y) }.

G={f3)=6f05)<9}

Observation: If we choose interpretations for f(3) and f(5) that satisfy the G and
monotonicity axiom, then it is always possible to define f for all remaining integers
such that the monotonicity axiom is satisfied.

Example: Strictly monotonic functions over Z.

To: Linear integer arithmetic.

O ={f/1}.
K={Vr,y (-z<yV f(z) < fy)) }

G={f@3B)>6, f(5) <9}

Observation: Even though we can choose interpretations for f(3) and f(5) that satisfy
G and the strict monotonicity axiom (map f(3) to 7 and f(5) to 8), we cannot define
f(4) such that the strict monotonicity axiom is satisfied.

To formalize the idea, we need partial algebras:

like (usual) total algebras, but f4 may be a partial function.
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There are several ways to define equality in partial algebras (strong equality, Evans
equality, weak equality, etc.). Here we use weak equality:

an equation s & t holds w.r.t. A and § if both A(8)(s) and A(f)(¢) are defined and
equal or if at least one of them is undefined;

a negated equation s % t holds w.r.t. A and g if both A(5)(s) and A(3)(t) are defined

and different or if at least one of them is undefined.

If a partial algebra A satisfies a set of formulas N w.r.t. weak equality, it is called a
weak partial model of N.

A partial algebra A embeds weakly into a partial algebra B if there is an injective total
mapping h : Uy — Ug such that if f4(as, ..., a,) is defined in A then fz(h(a1), ..., h(a,))
is defined in B and equal to h(fa(aq,...,ay)).

A theory extension Ty C Ty U K is called local, if for every set G, To U K U G is satisfiable
if and only if 7o U K[G] UG has a (partial) model, where K[G] is the set of instances of
clauses in K in which all terms starting with an 2;-symbol are ground terms occurring

in K or GG.

If every weak partial model of 7y U K can be embedded into a a total model, then the
theory extension 7y C 7o U K is local (Sofronie-Stokkermans 2005).

Note: There are many variants of partial models and embeddings corresponding to dif-
ferent kinds of locality.

Examples of local theory extensions:

free functions, constructors/selectors, monotonic functions, Lipschitz functions.
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2.4 Goal-driven Instantiation

Instantiation is used to refute the current model discovered by the ground solver.

Rather than a fast but loosely guided instantiation technique, we can search for the most
suitable instance if it exists.

Scenario:
M: a model of the ground formula returned by the ground SMT solver.
Q: the set of universally quantified clauses contained in the original input.
Problem:

Find a clause Vo C' € Q and a grounding substitution o such that M U C'o is unsat-
isfiable, if it exists.

E-ground (Dis)unification Problem

Given

E: a set of ground equality literals,
N: a set of equality literals,

find o such that E = No.

The E-ground (dis)unification problem can be used to encode the goal-driven instantia-
tion problem:

For M and each Vo C' € Q, try to solve the E-ground (dis)unification problem M =
(=C)o.

Congruence Closure with Free Variables

CCFV (Barbosa et al, 2017) decomposes N into sets of smaller constraints by replacing
terms with equivalent smaller ones until either

1. a variable assignment is possible, and the decomposition restarts afterwards,
2. a contradiction occurs, and the corresponding search branch is closed,

3. a substitution satisfying the problem is found.

CCFV is sound, complete and terminating for the E-ground (dis)unification problem.

Modern implementations: CVC4, VeriT.
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