
2 Satisfiability Modulo Theories (SMT)

So far:

decision procedures for satisfiability for various fragments of first-order theories;

often only for ground conjunctions of literals.

Goals:

extend decision procedures efficiently to ground CNF formulas;

later: extend to non-ground formulas (we will often lose completeness, however).

2.1 The CDCL(T) Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite set N of clauses),
where the atoms represent ground formulas over some theory T , check whether it is
satisfiable in T (and optionally: output one solution, if it is satisfiable).

Assumption:

As in the propositional case, clauses contain neither duplicated literals nor comple-
mentary literals.

For propositional CDCL (“Conflict-Driven Clause Learning”), we have considered partial
valuations, i. e., partial mappings from propositional variables to truth values.

A partial valuation A corresponds to a set M of literals that does not contain comple-
mentary literals, and vice versa:

A(L) is true, if L ∈ M .

A(L) is false, if L ∈ M .

A(L) is undefined, if neither L ∈ M nor L ∈ M .

We will now consider partial mappings from ground T -atoms to truth values (which
correspond to sets of T -literals).

In order to check whether a (partial) valuation is permissible, we identify the valuation
A or the set M with the conjunction of all literals in M :

The valuation A or the set M is called T -satisfiable, if the literals in M have a T -
model.

Since the elements of M can be interpreted both as propositional variables and as ground
T -formulas, we have to distinguish between two notions of entailment:

35

We write M |= F if F is entailed by M propositionally. We write M |=T F if the ground
T -formulas represented by M entail F .

M is called a T -model of F , if it is T -satisfiable and M |= F .

We write F |=T G, if the formula F entails G w. r. t. T , that is, if every T -model of F
is also a model of G.

Idea

Naive Approach:

Use CDCL to find a propositionally satisfying valuation.

If the valuation found is T -satisfiable, stop; otherwise continue CDCL search.

Note: The CDCL procedure may not use “pure literal” checks.

Improvements:

Check already partial valuations for T -satisfiability.

If T -decision procedure yields explanations, use them for non-chronological backjump-
ing.

If T -decision procedure can provide T -entailed literals, use them for propagation.

Since T -satisfiability checks may be costly, learn clauses that incorporate useful T -
knowledge, in particular explanations for backjumping.

CDCL(T)

The “CDCL Modulo Theories” procedure is modelled by a transition relation ⇒CDCL(T)

on a set of states.

States:

• fail

• M ‖ N ,

where M is a list of annotated literals (“trail”) and N is a set of clauses.

Annotated literal:

• L: deduced literal, due to propagation.

• Ld: decision literal (guessed literal).

36

CDCL(T) Rules from CDCL

Unit Propagate:

M ‖ N ∪ {C ∨ L} ⇒CDCL(T) M L ‖ N ∪ {C ∨ L}

if C is false under M and L is undefined under M .

Decide:

M ‖ N ⇒CDCL(T) M Ld ‖ N

if L is undefined under M .

Fail:

M ‖ N ∪ {C} ⇒CDCL(T) fail

if C is false under M and M contains no decision literals.

Specific CDCL(T) Rules

T -Learn:

M ‖ N ⇒CDCL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

T -Forget:

M ‖ N ∪ {C} ⇒CDCL(T) M ‖ N

if N |=T C.

T -Propagate:

M ‖ N ⇒CDCL(T) M L ‖ N

if M |=T L where L is undefined in M , and L or L occurs in N .

T -Backjump:

M ′ Ld M ′′ ‖ N ⇒CDCL(T) M ′ L′ ‖ N

if M ′ Ld M ′′ |= ¬C for some C ∈ N
and if there is some “backjump clause” C ′ ∨ L′ such that
N |=T C ′ ∨ L′ and M ′ |= ¬C ′,
L′ is undefined under M ′, and
L′ or L′ occurs in N or in M ′ Ld M ′′.

37

Note: We don’t need a special rule to handle the case that M ′ Ld M ′′ |=T ⊥. If the trail
contains a T -inconsistent subset, we can always add the negation of that subset using
T -Learn and apply T -Backjump afterwards.

CDCL(T) Properties

The system CDCL(T) consists of the rules Decide, Fail, Unit Propagate, T -Propagate,
T -Backjump, T -Learn and T -Forget.

Lemma 2.1 If we reach a state M ‖ N starting from ∅ ‖ N , then:

(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from T , N , and decision literals occurring
before L in M .

Proof. By induction on the length of the derivation. ✷

Lemma 2.2 If no clause is learned infinitely often, then every derivation starting from
∅ ‖ N terminates.

Proof. Similar to the propositional case.

Lemma 2.3 If ∅ ‖ N ⇒∗
CDCL(T) M ‖ N ′ and there is some conflicting clause in

M ‖ N ′, that is, M |= ¬C for some clause C in N ′, then either Fail or T -Backjump
applies to M ‖ N ′.

Proof. Similar to the propositional case. ✷

Lemma 2.4 If ∅ ‖ N ⇒∗

CDCL(T) M ‖ N ′ and M is T -unsatisfiable, then either there

is a conflicting clause in M ‖ N ′, or else T -Learn applies to M ‖ N ′, generating a
conflicting clause.

Proof. If M is T -unsatisfiable, then there are literals L1, . . . , Ln
in M such that ∅ |=T

L1 ∨ . . . ∨ L
n
. Hence the conflicting clause L1 ∨ . . . ∨ L

n
is either in M ‖ N ′, or else it

can be learned by one T -Learn step. ✷

38

Theorem 2.5 Consider a derivation ∅ ‖ N ⇒∗

CDCL(T) S, where no more rules of the

CDCL(T) procedure are applicable to S except T -Learn or T -Forget, and if S has the
form M ‖ N ′ then M is T -satisfiable. Then

(1) If S has the form M ‖ N ′, then M is a T -model of N and N ′.

(2) If S is fail then N and N ′ are T -unsatisfiable.

Proof. (1) Observe that the “Decide” rule is applicable as long as there are undefined
literals in the clause set. Hence all literals in N ′ must be defined. Furthermore no clause
in N ′ can be false under M , otherwise “Fail” or “Backjump” would be applicable. So
M is a T -model of every clause in N ′. Moreover, the side conditions of “T -Learn” and
“T -Forget” ensure that N ′ |=T N , therefore M is also a T -model of every clause in N .

(2) If we reach fail , then in the previous step we must have reached a state M ‖ N ′

such that some clause C ∈ N ′ is false under M and M contains no decision literals.
By part (2) of Lemma 2.1, every literal L in M follows from T and N . On the other
hand, we have C ∈ N ′, and the side conditions of “T -Learn” and “T -Forget” ensure
that N |=T N ′ and N ′ |=T N . Therefore N |=T C. So N and N ′ must be T -unsatisfiable.

✷

39

The Solver Interface

The general CDCL(T) procedure has to be connected to a “Solver” for T , a theory
module that performs at least T -satisfiability checks.

The solver is initialized with a list of all literals occurring in the input of the CDCL(T)
procedure.

Internally, it keeps a stack I of theory literals that is initially empty. The solver performs
the following operations on I:

SetTrue(L: T -Literal):

Check whether I ∪ {L} is T -satisfiable.

If no: return an explanation for L, that is, a subset J of I such that J |=T L.

If yes: push L on I.

Optionally: Return a list of literals that are T -consequences of I ∪ {L} (and have not
yet been detected before).

Note: Depending on T , detecting (all) T -consequences may be very cheap or very
expensive.

Backtrack(n: N):

Pop n literals from I.

Explanation(L: T -Literal):

Return an explanation for L, that is, a subset J of I such that J |=T L.

We assume that L has been returned previously as a result of some SetTrue(L′) op-
eration. No literal of J may occur in I after L′.

Computing Backjump Clauses

Backjump clauses for a conflict can then be computed as in the propositional case:

Start with the conflicting clause.

Resolve with the clauses used for Unit Propagate or the explanations produced by the
solver until a backjump clause (or ⊥) is found.

40

2.2 Heuristic Instantiation

CDCL(T) is limited to ground (or existentially quantified) formulas. Even if we have
decidability for more than the ground fragment of a theory T , we cannot use this in
CDCL(T).

Most current SMT implementations offer a limited support for universally quantified
formulas by heuristic instantiation.

Goal:

Create potentially useful ground instances of universally quantified clauses and add
them to the given ground clauses.

Idea (Detlefs, Nelson, Saxe: Simplify):

Select subset of the terms (or atoms) in ∀~xC as “trigger” (automatically, but can be
overridden manually).

If there is a ground instance Cθ of ∀~xC such that tθ occurs (modulo congruence) in
the current set of ground clauses for every t ∈ trigger(C), add Cθ to the set of ground
clauses (incrementally).

Conditions for trigger terms (or atoms):

(1) Every quantified variable of the clause occurs in some trigger term (therefore more
than one trigger term may be necessary).

(2) A trigger term is not a variable itself.

(3) A trigger is not explicitly forbidden by the user.

(4) There is no larger instance of the term in the formula:
(If f(x) were selected as a trigger in ∀xP (f(x), f(g(x))), a ground term f(a)
would produce an instance P (f(a), f(g(a))), which would produce an instance
P (f(g(a)), f(g(g(a)))), and so on.)

(5) No proper subterm satisfies (1)–(4).

Also possible (but expensive, therefore only in restricted form): Theory matching

The ground atom P (a) is not an instance of the trigger atom P (x+ 1); it is however
equivalent (in linear algebra) to P ((a− 1) + 1), which is an instance and may therefore
produce a new ground clause.

Heuristic instantiation is obviously incomplete

e. g., it does not find the contradiction for f(x, a) ≈ x, f(b, y) ≈ y, a 6≈ b

but it is quite useful in practice:

modern implementations: CVC, Yices, Z3.

41

2.3 Local Theory Extensions

Under certain circumstances, instantiating universally quantified variables with “known”
ground terms is sufficient for completeness.

Scenario:

Σ0 = (Ω0,Π0): base signature;
T0: Σ0-theory.

Σ1 = (Ω0 ∪ Ω1,Π0): signature extension;
K: universally quantified Σ1-clauses;
G: ground clauses.

Assumption: clauses in G are Σ1-flat and Σ1-linear:

only constants as arguments of Ω1-symbols,

if a constant occurs in two terms below an Ω1-symbol, then the two terms are identical,

no term contains the same constant twice below an Ω1-symbol.

Example: Monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f/1}.
K = { ∀x, y (¬x ≤ y ∨ f(x) ≤ f(y)) }.

G = { f(3) ≥ 6, f(5) ≤ 9 }.

Observation: If we choose interpretations for f(3) and f(5) that satisfy the G and
monotonicity axiom, then it is always possible to define f for all remaining integers
such that the monotonicity axiom is satisfied.

Example: Strictly monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f/1}.
K = { ∀x, y (¬x < y ∨ f(x) < f(y)) }.

G = { f(3) > 6, f(5) < 9 }.

Observation: Even though we can choose interpretations for f(3) and f(5) that satisfy
G and the strict monotonicity axiom (map f(3) to 7 and f(5) to 8), we cannot define
f(4) such that the strict monotonicity axiom is satisfied.

To formalize the idea, we need partial algebras:

like (usual) total algebras, but fA may be a partial function.

42

There are several ways to define equality in partial algebras (strong equality, Evans
equality, weak equality, etc.). Here we use weak equality:

an equation s ≈ t holds w. r. t. A and β if both A(β)(s) and A(β)(t) are defined and
equal or if at least one of them is undefined;

a negated equation s 6≈ t holds w. r. t. A and β if both A(β)(s) and A(β)(t) are defined
and different or if at least one of them is undefined.

If a partial algebra A satisfies a set of formulas N w. r. t. weak equality, it is called a
weak partial model of N .

A partial algebra A embeds weakly into a partial algebra B if there is an injective total
mapping h : UA → UB such that if fA(a1, . . . , an) is defined inA then fB(h(a1), . . . , h(an))
is defined in B and equal to h(fA(a1, . . . , an)).

A theory extension T0 ⊆ T0 ∪K is called local, if for every set G, T0 ∪K ∪G is satisfiable
if and only if T0 ∪K[G] ∪G has a (partial) model, where K[G] is the set of instances of
clauses in K in which all terms starting with an Ω1-symbol are ground terms occurring
in K or G.

If every weak partial model of T0 ∪K can be embedded into a a total model, then the
theory extension T0 ⊆ T0 ∪K is local (Sofronie-Stokkermans 2005).

Note: There are many variants of partial models and embeddings corresponding to dif-
ferent kinds of locality.

Examples of local theory extensions:

free functions, constructors/selectors, monotonic functions, Lipschitz functions.

43

2.4 Goal-driven Instantiation

Instantiation is used to refute the current model discovered by the ground solver.

Rather than a fast but loosely guided instantiation technique, we can search for the most
suitable instance if it exists.

Scenario:

M : a model of the ground formula returned by the ground SMT solver.

Q: the set of universally quantified clauses contained in the original input.

Problem:

Find a clause ∀xC ∈ Q and a grounding substitution σ such that M ∪ Cσ is unsat-
isfiable, if it exists.

E-ground (Dis)unification Problem

Given

E: a set of ground equality literals,
N : a set of equality literals,

find σ such that E |= Nσ.

The E-ground (dis)unification problem can be used to encode the goal-driven instantia-
tion problem:

For M and each ∀xC ∈ Q, try to solve the E-ground (dis)unification problem M |=
(¬C)σ.

Congruence Closure with Free Variables

CCFV (Barbosa et al, 2017) decomposes N into sets of smaller constraints by replacing
terms with equivalent smaller ones until either

1. a variable assignment is possible, and the decomposition restarts afterwards,

2. a contradiction occurs, and the corresponding search branch is closed,

3. a substitution satisfying the problem is found.

CCFV is sound, complete and terminating for the E-ground (dis)unification problem.

Modern implementations: CVC4, VeriT.

44

Literature

Haniel Barbosa, Pascal Fontaine, Andrew Reynolds: Congruence Closure with Free Vari-
ables. Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2017,
LNCS 10206, pp. 214-230, Springer, 2017.

David Detlefs, Greg Nelson, James B. Saxe: Simplify: A Theorem Prover for Program
Checking. Journal of the ACM, 52(3):365–473, 2005.

Yeting Ge, Leonardo de Moura: Complete instantiation for quantified formulas in Sat-
isfiabiliby Modulo Theories. International Conference on Computer Aided Verification,
CAV 2009 LNCS 5643, pp. 306–320, Springer, 2009.

Leonardo de Moura, Nikolaj Bjørner: Efficient E-Matching for SMT solvers. Automated
Deduction, CADE-21, LNAI 4603, pp. 183–198, Springer, 2007.

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solving SAT and SAT Modulo
Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

Viorica Sofronie-Stokkermans: Hierarchic reasoning in local theory extensions. Auto-
mated Deduction, CADE-20, LNAI 3632, pp. 219–234, Springer, 2005.

45

