
To work effectively with constrained clauses in a calculus, we need methods to check the
satisfiability of constraints:

Possible for LPO, KBO, but expensive.

If constraints become too large, we may delete some conjuncts of the constraint. (Note
that the calculus remains sound, if constraints are replaced by implied constraints.)

Refutational Completeness

The refutational completeness proof for constraint superposition looks mostly like in
Sect. 3.4.

Lifting works as before, so every ground infererence that is required in the proof is an
instance of some inference from the corresponding constrained clauses. (Easy.)

There is one significant problem, though.

Case 2 in the proof of Thm. 3.9 does not work for constrained clauses:

If we have a ground instance Cθ where xθ is reducible by RCθ, we can no longer
conclude that Cθ is true because it follows from some rule in RCθ and some smaller
ground instance Cθ′.

Example: Let C [[K]] be the clause f(x) ≈ a [[x ≻ a]], let θ = {x 7→ b}, and assume
that RCθ contains the rule b → a.
Then θ satisfies K, but θ′ = {x 7→ a} does not, so Cθ′ is not a ground instance of
C [[K]].

Solution:

Assumption: We start the saturation with a set N0 of unconstrained clauses; the limit
N∗ contains constrained clauses, though.

During the model construction, we ignore ground instances Cθ of clauses in N∗ for
which xθ is reducible by RCθ.

We obtain a model R∞ of all variable irreducible ground instances of clauses in N∗.

R∞ is also a model of all variable irreducible ground instances of clauses in N0.

Since all clauses in N0 are unconstrained, every ground instance of a clause in N0

follows from some rule in R∞ and some smaller ground instance; so it is true in R∞.

Consequently, R∞ is a model of all ground instances of clauses in N0.
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Other Constraints

The approach also works for other kinds of constraints.

In particular, we can replace unification by equality constraints (❀ “basic superposi-
tion”):

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

D′ ∨ C ′ ∨ s[t′] ≈ s′ [[K2 ∧K1 ∧K]]

where u is not a variable and
K = (t = u)

Note: In contrast to ordering constraints, these constraints are essential for soundness.

The Drawback

Constraints reduce the number of required inferences; however, they are detrimental to
redundancy:

Since we consider only variable irreducible ground instances during the model con-
struction, we may use only such instances for redundancy:

A clause is redundant, if all its variable irreducible ground instances follow from
smaller variable irreducible ground instances.

Even worse, since we don’t know R∞ in advance, we must consider variable irreducibil-
ity w. r. t. arbitrary rewrite systems.

Consequence: Not every subsumed clause is redundant!
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3.8 Hierarchic Superposition

The superposition calculus is a powerful tool to deal with formulas in uninterpreted

first-order logic.

What can we do if some symbols have a fixed interpretation?

Can we combine superposition with decision procedures, e. g., for linear rational arith-
metic? Can we integrate the decision procedure as a “black box”?

Sorted Logic

It is useful to treat this problem in sorted logic (cf. Sect. 1.11, page 31).

A many-sorted signature Σ = (Ξ,Ω,Π) fixes an alphabet of non-logical symbols, where

• Ξ is a set of sort symbols,

• Ω is a sets of function symbols,

• Π is a set of predicate symbols.

Each function symbol f ∈ Ω has a unique declaration f : ξ1 × · · · × ξn → ξ0; each
predicate symbol P ∈ Π has a unique declaration P : ξ1 × · · · × ξn with ξi ∈ Ξ.

In addition, each variable x has a unique declaration x : ξ.

We assume that all terms, atoms, substitutions are well-sorted.

A many-sorted algebra A consists of

• a non-empty set ξA for each ξ ∈ Ξ,

• a function fA : ξ1,A × · · · × ξn,A → ξ0,A for each f : ξ1 × · · · × ξn → ξ0 ∈ Ω,

• a subset PA ⊆ ξ1,A × · · · × ξn,A for each P : ξ1 × · · · × ξn ∈ Π.

Hierarchic Specifications

A specification SP = (Σ, C) consists of

• a signature Σ = (Ξ,Ω,Π),

• a class of term-generated Σ-algebras C closed under isomorphisms.

If C consists of all term-generated Σ-algebras satisfying the set of Σ-formulas N , we
write SP = (Σ, N).
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A hierarchic specification HSP = (SP , SP ′) consists of

• a base specification SP = (Σ, C),

• an extension SP ′ = (Σ′, N ′),

where Σ = (Ξ,Ω,Π), Σ′ = (Ξ′,Ω′,Π′), Ξ ⊆ Ξ′, Ω ⊆ Ω′, and Π ⊆ Π′.

A Σ′-algebra A is called a model of HSP = (SP , SP ′), if A is a model of N ′ and A|Σ ∈ C,
where the reduct A|Σ is defined as ((ξA)ξ∈Ξ, (fA)f∈Ω, (PA)P∈Π).

Note:

• no confusion: models of HSP may not identify elements that are different in the
base models.

• no junk: models of HSP may not add new elements to the interpretations of base
sorts.

Example:

Base specification: ((Ξ,Ω,Π), C), where

Ξ = {int}

Ω = { 0, 1,−1, 2,−2, . . . :→ int ,
− : int → int ,
+ : int × int → int }

Π = {≥ : int × int ,
> : int × int }

C = isomorphy class of Z

Extension: ((Ξ′,Ω′,Π′), N ′), where

Ξ′ = Ξ ∪ {list}

Ω′ = Ω ∪ { cons : int × list → list ,
length : list → int ,
empty :→ list ,
a :→ list }

Π′ = Π

N ′ = { length(a) ≥ 1,
length(cons(x, y)) ≈ length(y) + 1 }

Goal:

Check whether N ′ has a model in which the sort int is interpreted by Z and the
symbols from Ω and Π accordingly.
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Hierarchic Superposition

In order to use a prover for the base theory, we must preprocess the clauses:

A term that consists only of base symbols and variables of base sort is called a base term
(analogously for atoms, literals, clauses).

A clause C is called weakly abstracted, if every base term that occurs in C as a subterm
of a non-base term (or non-base non-equational literal) is a variable.

Every clause can be transformed into an equivalent weakly abstracted clause. We assume
that all input clauses are weakly abstracted.

A substitution is called simple, if it maps every variable of a base sort to a base term.

The inference rules of the hierarchic superposition calculus correspond to the rules of of
the standard superposition calculus with the following modifications:

• The term ordering ≻ must have the property that every base ground term (or non-
equational literal) is smaller than every non-base ground term (or non-equational
literal).

• We consider only simple substitutions as unifiers.

• We perform only inferences on non-base terms (or non-base non-equational liter-
als).

• If the conclusion of an inference is not weakly abstracted, we transform it into an
equivalent weakly abstracted clause.

While clauses that contain non-base literals are manipulated using superposition rules,
base clauses have to be passed to the base prover.

This yields one more inference rule:

Constraint Refutation:
M

⊥

where M is a set of base clauses
that is inconsistent w. r. t. C.
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Problems

There are two potential problems that are harmful to refutational completeness:

• We can only apply the constraint refutation rule to finite sets M . If C is not
compact, this is not sufficient.

• Since we only consider simple substitutions, we will only obtain a model of all
simple ground instances.

To show that we have a model of all instances, we need an additional condition
called sufficient completeness w. r. t. simple instances.

A set N of clauses is called sufficiently complete with respect to simple instances, if for
every model A′ of the set of simple ground instances of N and every ground non-base
term t of a base sort there exists a ground base term t such that t′ ≈ t is true in A′.

Note: Sufficient completeness w. r. t. simple instances ensures the absence of junk.

If the base signature contains Skolem constants, we can sometimes enforce sufficient
completeness by equating ground extension terms with a base sort to Skolem constants.

Skolem constants may harmful to compactness, though.

Completeness of Hierarchic Superposition

If the base theory is compact, the hierarchic superposition calculus is refutationally
complete for sets of clauses that are sufficiently complete with respect to simple instances
(Bachmair, Ganzinger, Waldmann, 1994; Baumgartner, Waldmann 2013).

Main proof idea:

If the set of base clauses in N has some base model, represent this model by a set E
of convergent ground equations and a set D of ground disequations.

Then show: If N is saturated w. r. t. hierarchic superposition, then E ∪ D ∪ Ñ is
saturated w. r. t. standard superposition, where Ñ is the set of simple ground instances
of clauses in N that are reduced w. r. t. E.
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A Refinement

In practice, a base signature often contains domain elements, that is, constant symbols
that are

• guaranteed to be different from each other in every base model, and

• minimal w. r. t. ≻ in their equivalent class.

Typical example for domain elements: number constants 0, 1,−1, 2,−2, . . .

If the base signature contains domain elements, then weak abstraction can be redefined
as follows:

A clause C is called weakly abstracted, if every base term that occurs in C as a subterm of
a non-base term (or non-base non-equational literal) is a variable or a domain element.

Why does that work?
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3.9 Integrating Theories I: E-Unification

Dealing with mathematical theories naively in a superposition prover is difficult:

Some axioms (e. g., commutativity) cannot be oriented w. r. t. a reduction ordering.
⇒ Provers compute many equivalent copies of a formula.

Some axiom sets (e. g., torsion-freeness, divisibility) are infinite.
⇒ Can we tell which axioms are really needed?

Hierarchic (“black-box”) superposition is easy to implement, but conditions like com-
pactness and sufficient completeness are rather restrictive.

Can we integrate theories directly into theorem proving calculi (“white-box” integra-
tion)?

Idea:

In order to avoid enumerating entire congruence classes w. r. t. an equational theory
E, treat formulas as representatives of their congruence classes.

Compute an inference between formula C and D if an inference between some clause
represented by C and some clause represented by D would be possible.

Consequence: We have to check whether there are substitutions that make terms s
and t equal w. r. t. E.
⇒ Unification is replaced by E-unification.

E-Unification

E-unification (unification modulo an equational theory E):

For a set of equality problems {s1 ≈ t1, . . . , sn ≈ tn}, an E-unifier is a substitution σ
such that for all i ∈ {1, . . . , n}: siσ ≈E tiσ.

Recall: siσ ≈E tiσ means E |= siσ ≈ tiσ.

In general, there are infinitely many (E-)unifiers.
What about most general unifiers?

Frequent cases: E = ∅, E = AC, E = ACU:

x+ (y + z) ≈ (x+ y) + z (associativity = A)

x+ y ≈ y + x (commutativity = C)

x+ 0 ≈ x (identity (unit) = U)
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The identity axiom is also abbreviated by “1”, in particular, if the binary operation is
denoted by ∗. (ACU = AC1).

Example:

x+ y and c are ACU-unifiable with {x 7→ c, y 7→ 0} and {x 7→ 0, y 7→ c}.

x+ y and x′ + y′ are ACU-unifiable with {x 7→ z1+ z2, y 7→ z3+ z4, x
′ 7→ z1 + z3, y

′ 7→
z2 + z4} (among others).

More general substitutions:

Let X be a set of variables.
A substitution σ is more general modulo E than a substitution σ′ on X , if there exists
a substitution ρ such that xσρ ≈E xσ′ for all x ∈ X .

Notation: σ .X
E σ′.

(Why X? Because we cannot restrict to idempotent substitutions.)

Complete sets of unifiers:

Let S be an E-unification problem, let X = V ar(S).
A set C of E-unifiers of S is called complete (CSU),
if for every E-unifier σ′ of S there exists a σ ∈ C
with σ .X

E σ′.

A complete set of E-unifiers C is called minimal (µCSU),
if for all σ, σ′ ∈ C, σ .X

E σ′ implies σ = σ′.

Note: every E-unification problem has a CSU. (Why?)

The set of equations E is of unification type

unitary, if every E-unification problem has a µCSU with cardinality ≤ 1 (e. g.: E = ∅);

finitary, if every E-unification problem has a finite µCSU (e. g.: E = ACU, E = AC,
E = C);

infinitary, if every E-unification problem has a µCSU and some E-unification problem
has an infinite µCSU (e. g.: E = A);

zero (or nullary), if some E-unification problem does not have a µCSU (e. g.: E =
A ∪ {x+ x ≈ x}).
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Unification modulo ACU

Let us first consider elementary ACU-unification:
the terms to be unified contain only variables and the function symbols from Σ =
({+/2, 0/0}, ∅).

Since parentheses and the order of summands don’t matter, every term over Xn =
{x1, . . . , xn} can be written as a sum

∑n

i=1
ai xi.

The ACU-equivalence class of a term t =
∑n

i=1
ai xi ∈ TΣ(Xn) is uniquely determined

by the vector ~vn(t) = (a1, . . . , an).

Analogously, a substitution σ = { xi →
∑m

j=1
bij xj | 1 ≤ i ≤ n } is uniquely determined

by the matrix

Mn,m(σ) =







b11 · · · b1m
...

...
bn1 · · · bnm







Let t =
∑n

i=1
ai xi and σ = { xi →

∑m

j=1
bij xj | 1 ≤ i ≤ n }.

Then tσ =
∑n

i=1
ai (
∑m

j=1
bij xj)

=
∑n

i=1

∑m

j=1
ai bij xj

=
∑m

j=1

∑n

i=1
ai bij xj

=
∑m

j=1
(
∑n

i=1
ai bij) xj .

Consequence:

~vm(tσ) = ~vn(t) ·Mn,m(σ).

Let S = {s1 ≈ t1, . . . , sk ≈ tk} be a set of equality problems over TΣ(Xn).

Then the following properties are equivalent:

(a) σ is an ACU-unifier of S from Xn → TΣ(Xm).

(b) ~vm(siσ) = ~vm(tiσ) for all i ∈ {1, . . . , k}.

(c) ~vn(si) ·Mn,m(σ) = ~vn(ti) ·Mn,m(σ) for all i ∈ {1, . . . , k}.

(d) (~vn(si)− ~vn(ti)) ·Mn,m(σ) = ~0m for all i ∈ {1, . . . , k}.

(e) Mk,n(S) ·Mn,m(σ) = ~0k,m.
where Mk,n(S) is the k × n matrix whose rows are the vectors ~vn(si)− ~vn(ti).

(f) The columns of Mn,m(σ) are non-negative integer solutions of the system of homo-
geneous linear diophantine equations DE(S):

Mk,n(S) ·

(

y1...
yn

)

=

(

0
...
0

)
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Computing unifiers:

Obviously: if ~y1, . . . , ~yr are solutions of DE(S) and a1, . . . , ar are natural numbers,
then a1~y1 + · · ·+ ar~yr is also a solution. (In particular, the zero vector is a solution!)

In fact, one can compute a finite set of solutions ~y1, . . . , ~yr, such that every solution
of DE(S) can be represented as such a linear combination.

Moreover, if we combine these column vectors ~y1, . . . , ~yr to an n× r matrix, this matrix
represents a most general unifier of S. (Proof: see Baader/Nipkow.)

From ACU to AC

A complete set of AC-unifiers for elementary AC-unification problems can be computed
from a most general ACU-unifier by some postprocessing.

Elementary AC-unification is finitary and the elementary unifiability problem is solvable
in polynomial time.

But that does not mean that minimal complete sets of AC-unifiers can be computed
efficiently.

E. Domenjoud has computed the exact size of AC-µCSUs for unification problems of the
following kind:

mx1 + · · ·+mxp ≈ n y1 + · · ·+ n yq

where gcd(m,n) = 1.

The number of unifiers is

(−1)p+q

p
∑

i=0

q
∑

j=0

(−1)i+j

(

p

i

)(

q

j

)

2(
m+j−1

m )(n+i−1

n )

For p = m = 1 and q = n = 4, that is, for the equation

4 x ≈ y1 + y2 + y3 + y4

this is

34 359 607 481.

Consequence:

If possible, avoid the enumeration of AC-µCSUs
(which may have doubly exponential size).

Rather: only check AC-unifiability.

Or: use ACU instead.
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Unification with Constants

So far:

Elementary unification:
terms over variables and {+, 0} or {+}.

Step 2:

Additional free constants.

Step 3:

Additional arbitrary free function symbols.
❀ Unification in the union of disjoint equational theories.

Unification with constants:

We can treat constants ai like variables xi that must be mapped to themselves.

Consequence: The algorithm is similar to the one we have seen before, but we have to
deal with homogeneous and inhomogeneous linear diophantine equations.

Some complexity bounds change, however:

Unification type:

elementary ACU-unification: unitary;
ACU-unification with constants: finitary.

Checking unifiability:

elementary ACU-unification: trivial;
ACU-unification with constants: NP-complete.

Combining Unification Procedures

The Baader–Schulz combination procedure allows to combine unification procedures for
disjoint theories (e. g., ACU and the free theory).

Basic idea (as usual): Use abstraction to convert the combined unification problem into
a union of two pure unification problems; solve them individually; combine the results.
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Problem 1:

The individual unification procedures might map the same variable to different terms,
e. g., {x 7→ y + z} and {x 7→ f(w)}.

Solution: Guess for each variable non-deterministically which procedure treats it like
a constant.

Problem 2:

Combining the results might produce cycles, e. g., {x 7→ y + z} and {y 7→ f(x)}.

Solution: Guess an ordering of the variables non-deterministically; each individual
unifier that is computed must respect the ordering.

Note: This is a non-trivial extension that may be impossible for some unification
procedures (but it is possible for regular equational theories, i. e., theories where for
each equation u ≈ v the terms u and v contain the same variables).
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3.10 Integrating Theories II: Calculi

We can replace syntactic unification by E-unification in the superposition calculus.

Moreover, it is usually necessary to choose a term ordering in such a way that all terms
in an E-congruence class behave in the same way in comparisons (E-compatible order-
ing).

However, this is usually not sufficient.

AC and ACU

Example: Let E = AC. The clauses

a + b ≈ d
b+ c ≈ e

c + d 6≈ a+ e

are contradictory w. r. t. AC, but if a ≻ b ≻ c ≻ d ≻ e, then the maximal sides of these
clauses are not AC-unifiable.

We have to compute inferences if some part of a maximal sum overlaps with a part of
another maximal sum (the constant b in the example above).

Technically, we can do this in such a way that we first replace positive literals s ≈ t by
s + x ≈ t + x, and then unify maximal sides w. r. t. AC or ACU (Peterson and Stickel
1981, Wertz 1992, Bachmair and Ganzinger 1994).

However, it turns out that even if we integrate AC or ACU in such a way into superposi-
tion, the resulting calculus is not particularly efficient – not even for ground formulas.

This is not surprising: The uniform word problem for AC or ACU is EXPSPACE-
complete (Cardoza, Lipton, and Meyer 1976, Mayr and Meyer 1982).
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Abelian Groups

Working in Abelian groups is easier:

If we integrate also the inverse axiom, it is sufficient to compute inferences if the
maximal part of a maximal sum overlaps with the maximal part of another maximal
sum (like in Gaussian elimination).

Intuitively, in Abelian groups we can always isolate the maximal part of a sum on one
side of an equation.

What does that mean for the non-ground case?

Example:

g(y) + x 6≈ 2z ∨ f(x) + z ≈ 2y

Shielded variables (x, y):

occur below a free function symbol,
❀ cannot be mapped to a maximal term,
❀ are not involved in inferences.

Unshielded variables (z):

can be instantiated with m · u+ s, where u is maximal,
❀ must be considered in inferences,
❀ variable overlaps (similar to ACU).

Variable overlaps are ugly:

If we want to derive a contradiction from

2a ≈ c
2b ≈ d

2x 6≈ c+ d

and a ≻ b ≻ c ≻ d, we have to map x to a sum of two variables x′ + x′′, unify x′ with
a and x′′ with b.
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Divisible Torsion-free Abelian Groups

Working in divisible torsion-free Abelian groups is still easier:

DTAGs permit variable elimination.

Every clause can be converted into a DTAG-equivalent clause without unshielded

variables.

Since only overlaps of maximal parts of maximal sums have to be computed, variable
overlaps become unnecessary.

Moreover, if abstraction is performed eagerly, terms to be unified do not contain +,
so ACU-unification can be replaced by standard unification.

Other Theories

A similar case: Chaining calculus for orderings.

D′ ∨ t′ < t C ′ ∨ s < s′

(D′ ∨ C ′ ∨ t′ < s′)σ

where σ is a most general unifier of t and s.

Avoids explicit inferences with transitivity.
Only maximal sides of ordering literals have to be overlapped.
But unshielded variables can be maximal.

In dense linear orderings without endpoints, all unshielded variables can be eliminated.

DTAG-superposition and chaining can be combined to get a calculus for ordered divisible
Abelian groups. Again, all unshielded variables can be eliminated.

Conclusion

Integrating theory axioms into superposition can become easier by integrating more
axioms:

Easier unification problem (AC → ACU).

More restrictive inference rules (ACU → AG).

Fewer (or no) variable overlaps (AG → DTAG).

Main drawback of all theory integration methods:

For each theory, we have to start from scratch, both for the completeness proof and
the implementation.
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