
Automated Reasoning II

Sophie Tourret, Uwe Waldmann

Summer Term 2018

1

Topics of the Course

Decision procedures:

equality (congruence closure),

algebraic theories,

combinations.

Satisfiability modulo theories (SMT):

CDCL(T),

dealing with universal quantification.

Superposition:

combining ordered resolution and completion,

optimizations,

integrating theories.

2

Higher-order Logic:

syntax, classical and Henkin’s semantics,

higher-order unification,

constrained resolution

3

Part 1: Decision Procedures

In general, validity (or unsatisfiability) of first-order formulas is

undecidable.

To get decidability results, we have to impose restrictions on

• signatures,

• formulas,

• and/or algebras.

4

1.1 Theories and Fragments

So far, we have considered the validity or satisfiability of

“unstructured” sets of formulas.

We will now split these sets of formulas into two parts:

a theory (which we keep fixed) and a set of formulas that we

consider relative to the theory.

5

Theories and Fragments

A first-order theory T is defined by

its signature Σ = (Ω,Π)

its axioms, that is, a set of closed Σ-formulas.

(We often use the same symbol T for a theory and its set of

axioms.)

Note: This is the syntactic view of theories. There is also a

semantic view, where one specifies a class of Σ-algebrasM and

considers Th(M), that is, all closed Σ-formulas that hold in the

algebras ofM.

6

Theories and Fragments

A Σ-algebra that satisfies all axioms of T is called a T -algebra

(or T -interpretation).

T is called consistent if there is at least one T -algebra.

(We will only consider consistent theories.)

7

Theories and Fragments

We can define models, validity, satisfiability, entailment,

equivalence, etc., relative to a theory T :

A T -algebra that is a model of a Σ-formula F is also called a

T -model of F .

A Σ-formula F is called T -valid,

if A,β |= F for all T -algebras A and assignments β.

A Σ-formula F is called T -satisfiable,

if A,β |= F for some T -algebra and assignment β

(and otherwise T -unsatisfiable).

(T -satisfiability of sets of formulas, T -entailment, T -equivalence:

analogously.)

8

Theories and Fragments

A fragment is some syntactically restricted class of Σ-formulas.

Typical restriction: only certain quantifier prefixes are permitted.

9

1.2 Equality

Theory of equality:

Signature: arbitrary

Axioms: none

(but the equality predicate ≈ has a fixed interpretation)

Alternatively:

Signature contains a binary predicate symbol ∼ instead of

the built-in ≈

Axioms: reflexivity, symmetry, transitivity, congruence for ∼

10

Equality

In general, satisfiability of first-order formulas w. r. t. equality

is undecidable.

However, we will show that it is decidable for ground first-order

formulas.

Note: It suffices to consider conjunctions of literals.

Arbitrary ground formulas can be converted into DNF;

a formula in DNF is satisfiable if and only if one of its

conjunctions is satisfiable.

11

Equality

Note that our problem can be written in several ways:

An equational clause

∀~x (A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bk) is T -valid

iff

∃~x (¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧ Bk) is T -unsatisfiable

iff

the Skolemized (ground!) formula

(¬A1 ∧ . . . ∧ ¬An ∧ B1 ∧ . . . ∧ Bk){~x 7→ ~c} is T -unsatisfiable

iff

(A1 ∨ . . . ∨ An ∨ ¬B1 ∨ . . . ∨ ¬Bk){~x 7→ ~c} is T -valid

12

Equality

Other names:

The theory is also known as EUF (equality with uninterpreted

function symbols).

The decision procedures for the ground fragment are called

congruence closure algorithms.

13

Congruence Closure

Goal: check (un-)satisfiability of a ground conjunction

u1 ≈ v1 ∧ . . . ∧ un ≈ vn ∧ ¬ s1 ≈ t1 ∧ . . . ∧ ¬ sk ≈ tk

Idea:

transform E = {u1 ≈ v1, . . . , un ≈ vn} into an equivalent

convergent TRS R and check whether si↓R = ti↓R .

if si↓R = ti↓R for some i :

si↓R = ti↓R ⇔ si ↔
∗
E ti ⇔ E |= si ≈ ti ⇒ unsat.

if si↓R = ti↓R for no i :

TΣ(X)/R = TΣ(X)/E is a model of the conjunction ⇒ sat.

14

Congruence Closure

In principle, one could use Knuth-Bendix completion to convert

E into an equivalent convergent TRS R.

If done properly (see exercises), Knuth-Bendix completion

terminates for ground inputs.

However, for the ground case, one can optimize the general

procedure.

15

Congruence Closure

First step:

Flatten terms:

Introduce new constant symbols c1, c2, . . . for all subterms:

g(a, h(h(b))) ≈ h(a)

is replaced by

a ≈ c1 ∧ b ≈ c2 ∧ h(c2) ≈ c3 ∧ h(c3) ≈ c4

∧ g(c1, c4) ≈ c5 ∧ h(c1) ≈ c6 ∧ c5 ≈ c6

16

Congruence Closure

Result: only two kinds of equations left.

D-equations: f (ci1 , . . . , cin) ≈ ci0 for f /n ∈ Ω, n ≥ 0.

C-equations: ci ≈ cj .

⇒ efficient indexing (e. g., using hash tables),

obvious termination for D-equations.

17

Inference Rules

The congruence closure algorithm is presented as a set of

inference rules working on a set of equations E and a set of

rules R: E0,R0 ⊢ E1,R1 ⊢ E2,R2 ⊢ . . .

At the beginning, E = E0 is the set of C -equations and R = R0

is the set of D-equations oriented left-to-right. At the end, E

should be empty; then R is the result.

Notation: The formula s
.

≈ t denotes either s ≈ t or t ≈ s.

18

Inference Rules

Simplify:

E ∪ {c
.

≈ c ′}, R ∪ {c → c ′′}

E ∪ {c ′′
.

≈ c ′}, R ∪ {c → c ′′}

Delete:

E ∪ {c ≈ c}, R

E , R

Orient:

E ∪ {c
.

≈ c ′}, R

E , R ∪ {c → c ′}
if c ≻ c ′

19

Inference Rules

Collapse:

E , R ∪ {t[c]p → c ′, c → c ′′}

E , R ∪ {t[c ′′]p → c ′, c → c ′′}
if p 6= ε

Deduce:

E , R ∪ {t → c , t → c ′}

E ∪ {c ≈ c ′}, R ∪ {t → c}

Note: for ground rewrite rules, critical pair computation does not

involve substitution. Therefore, every critical pair computation

can be replaced by a simplification, either using Deduce or

Collapse.

20

Strategy

The inference rules are applied according to the following

strategy:

(1) If there is an equation in E , use Simplify as long as possible

for this equation, then use either Delete or Orient. Repeat

until E is empty.

(2) If Collapse is applicable, apply it, if now Deduce is applicable,

apply it as well. Repeat until Collapse is no longer applicable.

(3) If E is non-empty, go to (1), otherwise return R.

21

Implementation

Instead of fixing the ordering ≻ in advance, it is preferable to

define it on the fly during the algorithm:

If we orient an equation c ≈ c ′ between two constant symbols,

we try to make that constant symbol larger that occurs less

often in R ⇒ fewer Collapse steps.

Additionally:

Use various index data structures so that all the required

operations can be performed efficiently.

Use a union-find data structure to represent the equivalence

classes encoded by the C-rules.

22

Implementation

Average runtime for an implementation using hash tables:

O(m logm), where m is the number of edges in the graph

representation of the initial C and D-equations.

23

Other Predicate Symbols

If the initial ground conjunction contains also non-equational

literals [¬] P(t1, . . . , tn), treat these like equational literals

[¬] P(t1, . . . , tn) ≈ true. Then use the same algorithm as before.

24

One Small Problem

The inference rules are sound in the usual sense: The conclusions

are entailed by the premises, so every T -model of the premises

is a T -model of the conclusions.

For the initial flattening, however, we get a weaker result: We

have to extend the T -models of the original equations to obtain

models of the flattened equations.

That is, we get a new algebra with the same universe as the

old one, with the same interpretations for old functions and

predicate symbols, but with appropriately chosen interpretations

for the new constants.

25

One Small Problem

Consequently, the relations ≈E and ≈R for the original E and

the final R are not the same. For instance, c3 ≈E c7 does not

hold, but c3 ≈R c7 may hold.

On the other hand, the model extension preserves the universe

and the interpretations for old symbols. Therefore, if s and t are

terms over the old symbols, we have s ≈E t iff s ≈R t.

This is sufficient for our purposes: The terms si and ti that we

want to normalize using R do not contain new symbols.

26

History

Congruence closure algorithms have been published, among

others, by Shostak (1978). by Nelson and Oppen (1980), and by

Downey, Sethi and Tarjan (1980).

Kapur (1997) showed that Shostak’s algorithm can be described

as a completion procedure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen

and the Downey/Sethi/Tarjan algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan

algorithm in the presentation of Bachmair and Tiwari.

27

1.3 Linear Rational Arithmetic

There are several ways to define linear rational arithmetic.

We need at least the following signature:

Σ = ({0/0, 1/0,+/2}, {</2})

and the pre-defined binary predicate ≈.

28

Linear Rational Arithmetic

The equational part of linear rational arithmetic is described by

the theory of divisible torsion-free abelian groups:

∀x , y , z (x + (y + z) ≈ (x + y) + z) (associativity)

∀x , y (x + y ≈ y + x) (commutativity)

∀x (x + 0 ≈ x) (identity)

∀x ∃y (x + y ≈ 0) (inverse)

For all n ≥ 1: ∀x (x + · · ·+ x
︸ ︷︷ ︸

n times

≈ 0→ x ≈ 0) (torsion-freeness)

For all n ≥ 1: ∀x ∃y (y + · · ·+ y
︸ ︷︷ ︸

n times

≈ x) (divisibility)

¬ 1 ≈ 0 (non-triviality)

29

Linear Rational Arithmetic

Note: Quantification over natural numbers is not part of

our language. We really need infinitely many axioms for

torsion-freeness and divisibility.

30

Linear Rational Arithmetic

By adding the axioms of a compatible strict total ordering, we

define ordered divisible abelian groups:

∀x (¬ x < x) (irreflexivity)

∀x , y , z (x < y ∧ y < z → x < z) (transitivity)

∀x , y (x < y ∨ y < x ∨ x ≈ y) (totality)

∀x , y , z (x < y → x + z < y + z) (compatibility)

0 < 1 (non-triviality)

31

Linear Rational Arithmetic

Note: The second non-triviality axiom renders the first one

superfluous. Moreover, as soon as we add the axioms of

compatible strict total orderings, torsion-freeness can be

omitted. Every ordered divisible abelian group is obviously

torsion-free.

In fact the converse holds: Every torsion-free abelian group can

be ordered (F.-W. Levi 1913).

Examples: Q, R, Qn, Rn, . . .

32

Linear Rational Arithmetic

The signature can be extended by further symbols:

≤/2, >/2, ≥/2, 6≈/2: defined using < and ≈

−/1: Skolem function for inverse axiom

−/2: defined using +/2 and −/1

divn/1: Skolem functions for divisibility axiom for all n ≥ 1.

multn/1: defined by ∀x (multn(x) ≈ x + · · ·+ x
︸ ︷︷ ︸

n times

) for all n ≥ 1.

multq/1: defined using multn, divn, − for all q ∈ Q.

(We usually write q · t or q t instead of multq(t).)

q/0 (for q ∈ Q): defined by q ≈ q · 1.

33

Linear Rational Arithmetic

Note: Every formula using the additional symbols is ODAG-

equivalent to a formula over the base signature.

When · is considered as a binary operator, (ordered) divisible

torsion-free abelian groups correspond to (ordered) rational

vector spaces.

34

Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits quantifier elimination: every

formula ∃x F or ∀x F in linear rational arithmetic can be

converted into an equivalent formula without the variable x .

The method was discovered in 1826 by J. Fourier and re-

discovered by T. Motzkin in 1936.

35

Fourier-Motzkin Quantifier Elimination

Observation: Every literal over the variables x , y1, . . . , yn can

be converted into an ODAG-equivalent literal x ∼ t[~y] or

0 ∼ t[~y], where ∼ ∈ {<,>,≤,≥,≈, 6≈} and t[~y] has the form
∑

i qi · yi + q0.

In other words, we can either eliminate x completely or isolate

in on one side of the literal, and we can replace every negative

ordering literal by a positive one.

Moreover, we can convert every 6≈-literal into an ODAG-

equivalent disjunction of two <-literals.

36

Fourier-Motzkin Quantifier Elimination

We first consider existentially quantified conjunctions of atoms.

If the conjunction contains an equation x ≈ t[~y], we can

eliminate the quantifier ∃x by substitution:

∃x (x ≈ t[~y] ∧ F)

is equivalent to

F {x 7→ t[~y]}

37

Fourier-Motzkin Quantifier Elimination

If x occurs only in inequations, then

∃x
(
∧

i x < si (~y) ∧
∧

j x ≤ tj (~y)

∧
∧

k x > uk(~y) ∧
∧

l x ≥ vl (~y) ∧
∧

m 0 ∼m wm(~y)
)

is equivalent to

∧

i

∧

k si (~y) > uk(~y) ∧
∧

j

∧

k tj(~y) > uk(~y)

∧
∧

i

∧

l si (~y) > vl(~y) ∧
∧

j

∧

l tj(~y) ≥ vl (~y)

∧
∧

m 0 ∼m wm(~y)

Proof: (⇒) by transitivity;

(⇐) take 1
2 (min{si , tj}+max{uk , vl}) as a witness.

38

Fourier-Motzkin Quantifier Elimination

Extension to arbitrary formulas:

Transform into prenex formula;

if innermost quantifier is ∃: transform matrix into DNF and

move ∃ into disjunction;

if innermost quantifier is ∀: replace ∀x F by ¬∃x ¬F , then

eliminate ∃.

39

Fourier-Motzkin Quantifier Elimination

Consequence: every closed formula over the signature of ODAGs

is ODAG-equivalent to either ⊤ or ⊥.

Consequence: ODAGs are a complete theory, i. e., every

closed formula over the signature of ODAGs is either valid or

unsatisfiable w. r. t. ODAGs.

40

Fourier-Motzkin Quantifier Elimination

Consequence: every closed formula over the signature of ODAGs

holds either in all ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the

signature of ODAGs.

(These properties do not hold for extended signatures!)

41

Fourier-Motzkin: Complexity

One FM-step for ∃:

formula size grows quadratically, therefore O(n2) runtime.

m quantifiers ∃ . . . ∃:

naive implementation produces a doubly exponential number

of inequations, therefore needs O(n2
m

) runtime

(the number of necessary inequations grows only exponentially,

though).

m quantifiers ∃∀∃∀ . . . ∃:

CNF/DNF conversion (exponential!) required after each step;

therefore non-elementary runtime.

42

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational

arithmetic was developed by R. Loos and V. Weispfenning

(1993).

The method is also known as “test point method” or

“virtual substitution method”.

43

Loos-Weispfenning Quantifier Elimination

For simplicity, we consider only one particular ODAG, namely Q

(as we have seen above, the results are the same for all ODAGs).

44

Loos-Weispfenning Quantifier Elimination

Let F (x ,~y) be a positive boolean combination of

linear (in-)equations x ∼i si (~y) and 0 ∼j s
′

j (~y)

with ∼i ,∼j ∈ {≈, 6≈,<,≤,>,≥},

that is, a formula built from linear (in-)equations, ∧ and ∨

(but without ¬).

Goal: Find a finite set T of “test points” so that

∃x F (x ,~y) |=|
∨

t∈T

F (x ,~y) {x 7→ t}

In other words: We want to replace the infinite disjunction ∃x

by a finite disjunction.

45

Loos-Weispfenning Quantifier Elimination

If we keep the values of the variables ~y fixed, then we can

consider F as a function F : x 7→ F (x ,~y) from Q to {0, 1}.

The value of each of the atoms si (~y) ∼i x changes only at si (~y),

and the value of F can only change if the value of one of its

atoms changes.

46

Loos-Weispfenning Quantifier Elimination

Let δ(~y) = min{ |si (~y)− sj (~y)| | si (~y) 6= sj(~y) }

F is a piecewise constant function; more precisely,

the set of all x with F (x ,~y) = 1 is a finite union of intervals.

(The union may be empty, the individual intervals may be finite

or infinite and open or closed.)

Moreover, each of the intervals has either length 0

(i. e., it consists of one point), or its length is at least δ(~y).

47

Loos-Weispfenning Quantifier Elimination

If the set of all x for which F (x ,~y) is 1 is non-empty, then

(i) F (x ,~y) = 1 for all x ≤ r(~y) for some r(~y) ∈ Q

(ii) or there is some point where the value of F (x ,~y) switches

from 0 to 1 when we traverse the real axis from −∞ to

+∞.

We use this observation to construct a set of test points.

We start with some “sufficiently small” test point r(~y) to take

care of case (i).

48

Loos-Weispfenning Quantifier Elimination

For case (ii), we observe that F (x ,~y) can only switch from 0

to 1 if one of the atoms switches from 0 to 1. (We consider

only positive boolean combinations of atoms, and ∧ and ∨ are

monotonic w. r. t. truth values.)

x ≤ si (~y) and x < si (~y) do not switch from 0 to 1

when x grows.

x ≥ si (~y) and x ≈ si (~y) switch from 0 to 1 at si (~y)

⇒ si (~y) is a test point.

x > si (~y) and x 6≈ si (~y) switch from 0 to 1 “right after” si (~y)

⇒ si (~y) + ε (for some 0 < ε < δ(~y)) is a test point.

49

Loos-Weispfenning Quantifier Elimination

If r(~y) is sufficiently small and 0 < ε < δ(~y), then

T := {r(~y)} ∪ { si (~y) | ∼i ∈ {≥, =} }

∪ { si (~y) + ε | ∼i ∈ {>, 6=} }.

is a set of test points.

Problem:

We don’t know how small r(~y) has to be for case (i), and we

don’t know δ(~y) for case (ii).

50

Loos-Weispfenning Quantifier Elimination

Idea:

We consider the limits for r → −∞ and for ε ց 0, that is, we

redefine

T := {−∞} ∪ { si (~y) | ∼i ∈ {≥, =} }

∪ { si (~y) + ε | ∼i ∈ {>, 6=} }.

How can we eliminate the infinitesimals ∞ and ε when we

substitute elements of T for x ?

51

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

(x < s(~y)) {x 7→ −∞} := lim
r→−∞

(r < s(~y)) = ⊤

(x ≤ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≤ s(~y)) = ⊤

(x > s(~y)) {x 7→ −∞} := lim
r→−∞

(r > s(~y)) = ⊥

(x ≥ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≥ s(~y)) = ⊥

(x ≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r 6≈ s(~y)) = ⊤

52

Loos-Weispfenning Quantifier Elimination

Virtual substitution:

(x < s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε < s(~y)) = (u < s(~y))

(x ≤ s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε ≤ s(~y)) = (u < s(~y))

(x > s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε > s(~y)) = (u ≥ s(~y))

(x ≥ s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε ≥ s(~y)) = (u ≥ s(~y))

(x ≈ s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ u + ε} := lim
εց0

(u + ε 6≈ s(~y)) = ⊤

53

Loos-Weispfenning Quantifier Elimination

We have traversed the real axis from −∞ to +∞. Alternatively,

we can traverse it from +∞ to −∞.

In this case, the test points are

T ′ := {+∞} ∪ { si (~y) | ∼i ∈ {≤, =} }

∪ { si (~y)− ε | ∼i ∈ {<, 6=} }.

Infinitesimals are eliminated in a similar way as before.

In practice: Compute both T and T ′ and take the smaller set.

54

Loos-Weispfenning Quantifier Elimination

For a universally quantified formulas ∀x F , we replace it by

¬∃x ¬F , push inner negation downwards, and then continue as

before.

Note that there is no CNF/DNF transformation required.

Loos-Weispfenning quantifier elimination works on arbitrary

positive formulas.

55

Loos-Weispfenning: Complexity

One LW-step for ∃ or ∀:

as the number of test points is at most one plus the number

of atoms (one plus half of the number of atoms, if there are

only ordering literals), the formula size grows quadratically;

therefore O(n2) runtime.

56

Loos-Weispfenning: Complexity

Multiple quantifiers of the same kind:

∃x2 ∃x1. F (x1, x2,~y)

❀ ∃x2.
(∨

t1∈T1
F (x1, x2,~y) {x1 7→ t1}

)

❀
∨

t1∈T1
(∃x2. F (x1, x2,~y) {x1 7→ t1})

❀
∨

t1∈T1

∨

t2∈T2
(F (x1, x2,~y) {x1 7→ t1} {x2 7→ t2})

57

Loos-Weispfenning: Complexity

m quantifiers ∃ . . . ∃ or ∀ . . . ∀:

formula size is multiplied by n in each step, therefore O(nm+1)

runtime.

m quantifiers ∃∀∃∀ . . . ∃:

doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly

redundant; so an efficient implementation must make heavy use

of simplification techniques.

58

1.4 Existentially-quantified LRA

So far, we have considered formulas that may contain free,

existentially quantified, and universally quantified variables.

For the special case of conjunction of linear inequations in which

all variables are existentially quantified, there are more efficient

methods available.

Main idea: reduce satisfiability problem to optimization problem.

59

Linear Optimization

Goal:

Solve a linear optimization (also called: linear programming)

problem for given numbers aij , bi , cj ∈ R:

maximize
∑

1≤j≤n cjxj

for
∧

1≤i≤m

∑

1≤j≤n aijxj ≤ bi

or in vectorial notation:

maximize ~c ⊤~x

for A~x ≤ ~b

60

Linear Optimization

Simplex algorithm:

Developed independently by Kantorovich (1939),

Dantzig (1948).

Polynomial-time average-case complexity; worst-case time

complexity is exponential, though.

Interior point methods:

First algorithm by Karmarkar (1984).

Polynomial-time worst-case complexity (but large constants).

In practice: no clear winner.

61

Linear Optimization

Implementations:

GLPK (GNU Linear Programming Kit),

Gurobi.

62

Linear Optimization

Main idea of Simplex:

A~x ≤ ~b describes a convex polyhedron.

Pick one vertex of the polyhedron,

then follow the edges of the polyhedron towards an optimal

solution.

By convexity, the local optimum found in this way is also a

global optimum.

Details: see special lecture on optimization.

63

Linear Optimization

Using an optimization procedure for checking satisfiability:

Goal: Check whether A~x ≤ ~b is satisfiable.

To use the Simplex method, we have to transform the original

(possibly empty) polyhedron into another polyhedron that is

non-empty and for which we know one initial vertex.

Every real number can be written as the difference of two

non-negative real numbers.

Use this idea to convert A~x ≤ ~b into an equisatisfiable

inequation system ~y ≥ ~0, B~y ≤ ~b for new variables ~y .

64

Linear Optimization

Multiply those inequations of the inequation system B~y ≤ ~b

in which the number on the right-hand side is negative by

−1. We obtain two inequation systems D1~y ≤ ~g1, D2~y ≥ ~g2,

such that ~g1 ≥ ~0, ~g2 > 0.

Now solve

maximize ~1⊤(D2~y − ~z)

for ~y ,~z ≥ ~0

D1~y ≤ ~g1

D2~y − ~z ≤ ~g2

where ~z is a vector of new variables with the same size as ~g2.

65

Linear Optimization

Observation 1:
~0 is a vertex of the polyhedron of this optimization problem.

Observation 2:

The maximum is ~1⊤~g2 if and only if ~y ≥ ~0, D1~y ≤ ~g1,

D2~y ≥ ~g2 has a solution.

(⇒): If ~1⊤(D2~y − ~z) = ~1⊤~g2 for some ~y ,~z satisfying

D2~y −~z ≤ ~g2, then D2~y −~z = ~g2, hence D2~y = ~g2 +~z ≥ ~g2.

(⇐): ~1⊤(D2~y − ~z) can never be larger than ~1⊤~g2. If ~y ≥ ~0,

D1~y ≤ ~g1, D2~y ≥ ~g2 has a solution, choose ~z = D2~y − ~g2;

then ~1⊤(D2~y − ~z) = ~1⊤~g2.

66

Linear Optimization

A Simplex variant:

Transform the satisfiability problem into the form

A~x = ~0

~l ≤ ~x ≤ ~u

(where li may be −∞ and ui may be +∞).

Relation to optimization problem is obscured.

But: More efficient if one needs an incremental decision

procedure, where inequations may be added and retracted

(Dutertre and de Moura 2006).

67

1.5 Non-linear Real Arithmetic

Tarski (1951): Quantifier elimination is possible for non-linear

real arithmetic (or more generally, for real-closed fields).

His algorithm had non-elementary complexity, however.

An improved algorithm by Collins (1975) (with further

improvements by Hong) has doubly exponential complexity:

Cylindrical algebraic decomposition (CAD).

Implementation: QEPCAD.

68

Cylindrical Algebraic Decomposition

Given: First-order formula over atoms of the form fi (~x) ∼ 0,

where the fi are polynomials over variables ~x .

Goal: Decompose Rn into a finite number of regions such that

all polynomials have invariant sign on every region X :

∀i (∀~x ∈ X . fi (~x) < 0

∨ ∀~x ∈ X . fi (~x) = 0

∨ ∀~x ∈ X . fi (~x) > 0)

Note: Implementation needs exact arithmetic using algebraic

numbers (i. e., zeroes of univariate polynomials with integer

coefficients).

69

1.6 Real Arithmetic incl. Transcendental Fctns.

Real arithmetic with exp/log: decidability unknown.

Real arithmetic with trigonometric functions: undecidable

The following formula holds exactly if x ∈ Z:

∃y (sin(y) = 0 ∧ 3 < y ∧ y < 4 ∧ sin(x · y) = 0)

(note that necessarily y = π).

Consequence: Peano arithmetic (which is undecidable) can be

encoded in real arithmetic with trigonometric functions.

70

Real Arithmetic incl. Transcendental Fctns.

However, real arithmetic with transcendental functions is

decidable for formulas that are stable under perturbations, i. e.,

whose truth value does not change if numeric constants are

modified by some sufficiently small ε.

Example:

Stable under perturbations: ∃x x2 ≤ 5

Not stable under perturbations: ∃x x2 ≤ 0

(Formula is true, but if we subtract an arbitrarily small ε > 0

from the right-hand side, it becomes false.)

71

Real Arithmetic incl. Transcendental Fctns.

Unsatisfactory from a mathematical point of view, but sufficient

for engineering applications (where stability under perturbations

is necessary anyhow).

Approach:

Interval arithmetic + interval bisection if necessary (Ratschan).

Sound for general formulas; complete for formulas that are

stable under perturbations; may loop forever if the formula is

not stable under perturbations.

72

1.7 Linear Integer Arithmetic

Linear integer arithmetic = Presburger arithmetic.

Decidable (Presburger, 1929), but quantifier elimination is only

possible if additional divisibility operators are present:

∃x (y = 2x) is equivalent to divides(2, y) but not to any

quantifier-free formula over the base signature.

Cooper (1972): Quantifier elimination procedure,

triple exponential for arbitrarily quantified formulas.

73

The Omega Test

Omega test (Pugh, 1991): variant of Fourier–Motzkin for

conjunctions of (in-)equations in linear integer arithmetic.

Idea:

• Perform easy transformations, e. g.:

3x + 6y ≤ 8 7→ 3x + 6y ≤ 6 7→ x + 2y ≤ 2

3x + 6y = 8 7→ ⊥

(since 3x + 6y must be divisible by 3).

• Eliminate equations

(easy, if one coefficient is 1; tricky otherwise).

74

The Omega Test

• If only inequations are left:

no real solutions → unsatisfiable for Z

“sufficiently many” real solutions → satisfiable for Z

otherwise: branch

75

The Omega Test

What does “sufficiently many” mean?

Consider inequations ax ≤ s and bx ≥ t with a, b ∈ N>0 and

polynomials s, t.

If these inequations have real solutions, the interval of

solutions ranges from 1
b
t to 1

a
s.

The longest possible interval of this kind that does not contain

any integer number ranges from i + 1
b
to i + 1− 1

a
for some

i ∈ Z;

it has the length 1− 1
a
− 1

b
.

76

The Omega Test

Consequence:

If 1
a
s > 1

b
t + (1 − 1

a
− 1

b
), or equivalently, bs ≥ at + ab −

a − b + 1 is satisfiable, then the original problem must have

integer solutions.

It remains to consider the case that bs ≥ at is satisfiable

(hence there are real solutions) but bs ≥ at + ab − a− b + 1

is not (hence the interval of real solutions need not contain

an integer).

77

The Omega Test

In the latter case, bs ≤ at + ab − a − b holds, hence for every

solution of the original problem:

t ≤ bx ≤ b
a
s ≤ t + (b − 1− b

a
)

and if x is an integer, t ≤ bx ≤ t +
⌊
b − 1− b

a

⌋

⇒ Branch non-deterministically:

Add one of the equations bx = t + i

for i ∈ {0, . . . , ⌊b − 1− b
a

⌋
}.

Alternatively, if b > a:

Add one of the equations ax = s − i

for i ∈ {0, . . . , ⌊a− 1− a
b

⌋
}.

78

The Omega Test

Note: Efficiency depends highly on the size of coefficients.

In applications from program verification, there is almost always

some variable with a very small coefficient.

If all coefficients are large, the branching step gets expensive.

79

Branch-and-Cut

Alternative approach: Reduce satisfiability problem to

optimization problem (like Simplex).

ILP, MILP: (mixed) integer linear programming.

80

Branch-and-Cut

Two basic approaches:

Branching:

If the simplex algorithm finds a solution with x = 2.7, add the

inequation x ≤ 2 or the inequation x ≥ 3.

Cutting planes:

Derive an inequation that holds for all real solutions, then

round it to obtain an inequation that holds for all integer

solutions, but not for the real solution found previously.

81

Branch-and-Cut

Example:

Given: 2x − 3y ≤ 1

2x + 3y ≤ 5

−5x − 4y ≤ −7

Simplex finds an extremal solution x = 3
2 , y = 2

3 .

From the first two inequations, we see that 4x ≤ 6,

hence x ≤ 3
2 . If x ∈ Z, we conclude x = ⌊x⌋ ≤ ⌊ 32⌋ = 1.

⇒ Add the inequation x ≤ 1, which holds for all integer

solutions, but cuts off the solution (32 ,
2
3).

82

Branch-and-Cut

In practice:

Use both: Alternate between branching and cutting steps.

Better performance than the individual approaches.

83

1.8 Difference Logic

Difference Logic (DL):

Fragment of linear rational or integer arithmetic.

Formulas: conjunctions of atoms x − y < c or x − y ≤ c ,

x , y ∈ X ,

c ∈ Q (or c ∈ Z).

One special variable x0 whose value is fixed to 0 is permitted;

this allows to express atoms like x < 3 in the form x − x0 < 3.

84

Difference Logic

Solving difference logic:

Let F be a conjunction in DL.

For simplicity: only non-strict inequalities.

Define a weighted graph G :

Vertices V : Variables in F .

Edges E : x − y ≤ c ❀ edge (x , y) with weight c .

Theorem: F is unsatisfiable iff G has a negative cycle.

Can be checked in O(|V | · |E |) using the Bellman-Ford

algorithm.

85

1.9 C-Arithmetic

In languages like C: Bounded integer arithmetic (modulo 2n),

in device drivers also combined with bitwise operations.

Bit-Blasting (encode everything as boolean circuits, use CDCL):

Naive encoding: possible, but often too inefficient.

If combined with over-/underapproximation techniques

(Bryant, Kroening, et al.): successful.

86

1.10 Decision Procedures for Data Structures

There are decision procedures for, e. g.,

Arrays (read, write)

Lists (car, cdr, cons)

Sets or multisets with cardinalities

Bitvectors

Note: There are usually restrictions on quantifications. Unre-

stricted universal quantification can lead to undecidability.

87

1.11 Combining Decision Procedures

Problem:

Let T1 and T2 be first-order theories over the signatures

Σ1 and Σ2.

Assume that we have decision procedures for the satisfiability

of existentially quantified formulas (or the validity of

universally quantified formulas) w. r. t. T1 and T2.

Can we combine them to get a decision procedure for the

satisfiability of existentially quantified formulas w. r. t. T1 ∪T2 ?

88

Combining Decision Procedures

General assumption:

Σ1 and Σ2 are disjoint.

The only symbol shared by T1 and T2 is built-in equality.

We consider only conjunctions of literals.

For general formulas, convert to DNF first and consider each

conjunction individually.

89

Abstraction

To be able to use the individual decision procedures, we have

to transform the original formula in such a way that each atom

contains only symbols of one of the signatures (plus variables).

This process is known as variable abstraction or purification.

90

Abstraction

We apply the following rule as long as possible:

∃~x (F [t])

∃~x , y (F [y] ∧ t ≈ y)

if the top symbol of t belongs to Σi and t occurs in F

directly below a Σj -symbol or in a (positive or negative)

equation s ≈ t where the top symbol of s belongs to Σj

(i 6= j), and if y is a new variable.

It is easy to see that the original and the purified formula are

equivalent.

91

Stable Infiniteness

Problem:

Even if the Σ1-formula F1 and the Σ2-formula F2 do not share

any symbols (not even variables), and if F1 is T1-satisfiable

and F2 is T2-satisfiable, we cannot conclude that F1 ∧ F2 is

(T1 ∪ T2)-satisfiable.

92

Stable Infiniteness

Example:

Consider

T1 = {∀x , y , z (x ≈ y ∨ x ≈ z ∨ y ≈ z)}

and

T2 = {∃x , y , z (x 6≈ y ∧ x 6≈ z ∧ y 6≈ z)}.

All T1-models have at most two elements, and all T2-models

have at least three elements.

Since T1 ∪ T2 is contradictory, there are no (T1 ∪T2)-satisfiable

formulas.

93

Stable Infiniteness

To ensure that T1-models and T2-models can be combined to

(T1 ∪ T2)-models, we require that both T1 and T2 are stably

infinite.

A first-order theory T is called stably infinite, if every existentially

quantified formula that has a T -model has also a T -model with

a (countably) infinite universe.

Note: By the Löwenheim–Skolem theorem, “countable” is

redundant here.

94

Shared Variables

Even if ∃~x F1 is T1-satisfiable and ∃~x F2 is T2-satisfiable, it can

happen that ∃~x (F1 ∧ F2) is not (T1 ∪ T2)-satisfiable,

for instance because the shared variables x and y must be equal

in all T1-models of ∃~x F1 and different in all T2-models of ∃~x F2.

95

Shared Variables

Example:

Consider

F1 = (x + (−y) ≈ 0),

and

F2 = (f (x) 6≈ f (y))

where T1 is linear rational arithmetic and T2 is EUF.

We must exchange information about shared variables to detect

the contradiction.

96

The Nelson–Oppen Algorithm (Non-determ.)

Suppose that ∃~x F is a purified conjunction of Σ1 and Σ2-literals.

Let F1 be the conjunction of all literals of F that do not contain

Σ2-symbols;

let F2 be the conjunction of all literals of F that do not contain

Σ1-symbols.

(Equations between variables are in both F1 and F2.)

The Nelson–Oppen algorithm starts with the pair F1,F2 and

applies the following inference rules.

97

The Nelson–Oppen Algorithm (Non-determ.)

Unsat:

F1,F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i .

Branch:

F1,F2

F1 ∧ (x ≈ y),F2 ∧ (x ≈ y) | F1 ∧ (x 6≈ y),F2 ∧ (x 6≈ y)

if x and y are two different variables appearing in

both F1 and F2 such that neither x ≈ y nor x 6≈ y

occurs in both F1 and F2

98

The Nelson–Oppen Algorithm (Non-determ.)

“|” means non-deterministic (backtracking!) branching of the

derivation into two subderivations. Derivations are therefore

trees. All branches need to be reduced until termination.

Clearly, all derivation paths are finite since there are only finitely

many shared variables in F1 and F2, therefore the procedure

represented by the rules is terminating.

We call a constraint configuration to which no rule applies

irreducible.

99

The Nelson–Oppen Algorithm (Non-determ.)

Theorem 1.1 (Soundness):

If “Branch” can be applied to F1,F2, then ∃~x (F1 ∧ F2) is

satisfiable in T1 ∪ T2 if and only if one of the successor

configurations of F1,F2 is satisfiable in T1 ∪ T2.

Corollary 1.2:

If all paths in a derivation tree from F1,F2 end in ⊥, then

∃~x (F1 ∧ F2) is unsatisfiable in T1 ∪ T2.

100

The Nelson–Oppen Algorithm (Non-determ.)

For completeness we need to show that if one branch in a

derivation terminates with an irreducible configuration F1,F2

(different from ⊥), then ∃~x (F1 ∧ F2) (and, thus, the initial

formula of the derivation) is satisfiable in the combined theory.

As ∃~x (F1 ∧ F2) is irreducible by “Unsat”, the two formulas

are satisfiable in their respective component theories, that is,

we have Ti -models Ai of ∃~x Fi for i ∈ {1, 2}. We are left with

combining the models into a single one that is both a model

of the combined theory and of the combined formula. These

constructions are called amalgamations.

101

The Nelson–Oppen Algorithm (Non-determ.)

Let F be a Σi -formula and let S be a set of variables of F .

F is called compatible with an equivalence ∼ on S if the formula

∃~z
(

F ∧
∧

x ,y∈S, x∼y

x ≈ y ∧
∧

x ,y∈S, x 6∼y

x 6≈ y
)

(1)

is Ti -satisfiable whenever F is Ti -satisfiable.

This expresses that F does not contradict equalities between the

variables in S as given by ∼.

102

The Nelson–Oppen Algorithm (Non-determ.)

Proposition 1.3:

If F1,F2 is a pair of conjunctions over T1 and T2, respectively,

that is irreducible by “Branch”, then both F1 and F2 are

compatible with some equivalence ∼ on the shared variables S

of F1 and F2.

Proof:

If F1,F2 is irreducible by the branching rule, then for each pair

of shared variables x and y , both F1 and F2 contain either x ≈ y

or x 6≈ y .

Choose ∼ to be the equivalence given by all (positive) variable

equations between shared variables that are contained in F1.

103

The Nelson–Oppen Algorithm (Non-determ.)

Lemma 1.4 (Amalgamation Lemma):

Let T1 and T2 be two stably infinite theories over disjoint

signatures Σ1 and Σ2. Furthermore let F1,F2 be a pair of

conjunctions of literals over T1 and T2, respectively, both

compatible with some equivalence ∼ on the shared variables of

F1 and F2. Then F1 ∧ F2 is (T1 ∪ T2)-satisfiable if and only if

each Fi is Ti -satisfiable.

104

The Nelson–Oppen Algorithm (Non-determ.)

Theorem 1.5:

The non-deterministic Nelson–Oppen algorithm is terminating

and complete for deciding satisfiability of pure conjunctions of

literals F1 and F2 over T1 ∪ T2 for signature-disjoint, stably

infinite theories T1 and T2.

Proof:

Suppose that F1,F2 is irreducible by the inference rules of the

Nelson–Oppen algorithm. Applying the amalgamation lemma

in combination with Prop. 1.3 we infer that F1,F2 is satisfiable

w. r. t. T1 ∪ T2.

105

Convexity

The number of possible equivalences of shared variables grows

superexponentially with the number of shared variables, so

enumerating all possible equivalences non-deterministically is

going to be inefficient.

A much faster variant of the Nelson–Oppen algorithm exists for

convex theories.

106

Convexity

A first-order theory T is called convex w. r. t. equations,

if for every conjunction Γ of Σ-equations and non-equational

Σ-literals and for all Σ-equations Ai (1 ≤ i ≤ n),

whenever T |= ∀~x (Γ→ A1 ∨ . . . ∨ An), then there exists

some index j such that T |= ∀~x (Γ→ Aj).

107

Convexity

Theorem 1.6:

If a first-order theory T is convex w. r. t. equations and has no

trivial models (i. e., models with only one element), then T is

stably infinite.

108

Convexity

Lemma 1.7:

Suppose T is convex, F a conjunction of literals, and S a

subset of its variables. Let, for any pair of variables xi and xj

in S , xi ∼ xj if and only if T |= ∀~x (F → xi ≈ xj). Then F is

compatible with ∼.

109

The Nelson–Oppen Algorithm (Determ./Convex)

Unsat:

F1,F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i .

Propagate:

F1,F2

F1 ∧ (x ≈ y),F2 ∧ (x ≈ y)

if x and y are two different variables appearing in

both F1 and F2 such that

T1 |= ∀~x (F1 → x ≈ y) and T2 6|= ∀~x (F2 → x ≈ y)

or T2 |= ∀~x (F2 → x ≈ y) and T1 6|= ∀~x (F1 → x ≈ y).

110

The Nelson–Oppen Algorithm (Determ./Convex)

Theorem 1.8:

If T1 and T2 are signature-disjoint theories that are convex

w. r. t. equations and have no trivial models, then the deter-

ministic Nelson–Oppen algorithm is terminating, sound and

complete for deciding satisfiability of pure conjunctions of literals

F1 and F2 over T1 ∪ T2.

111

The Nelson–Oppen Algorithm (Determ./Convex)

Corollary 1.9:

The deterministic Nelson–Oppen algorithm for convex theories

requires at most O(n3) calls to the individual decision procedures

for the component theories, where n is the number of shared

variables.

112

Iterating Nelson–Oppen

The Nelson–Oppen combination procedures can be iterated to

work with more than two component theories by virtue of the

following observations where signature disjointness is assumed:

Theorem 1.10:

If T1 and T2 are stably infinite, then so is T1 ∪ T2.

113

Iterating Nelson–Oppen

Lemma 1.11:

A first-order theory T is convex w. r. t. equations if and only

if for every conjunction Γ of Σ-equations and non-equational

Σ-literals and for all equations xi ≈ x ′i (1 ≤ i ≤ n), whenever

T |= ∀~x (Γ → x1 ≈ x ′1 ∨ . . . ∨ xn ≈ x ′n), then there exists some

index j such that T |= ∀~x (Γ→ xj ≈ x ′j).

114

Iterating Nelson–Oppen

Lemma 1.12:

Let T be a first-order theory that is convex w. r. t. equations. Let

F is a conjunction of literals; let F− be the conjunction of all

negative equational literals in F and let F+ be the conjunction

of all remaining literals in F . If T |= ∀~x (F → x ≈ y), then ∃~x F

is T -unsatisfiable or T |= ∀~x (F+ → x ≈ y).

Theorem 1.13:

If T1 and T2 are convex w. r. t. equations and do not have trivial

models, then so is T1 ∪ T2.

115

Extensions

Many-sorted logics:

read/2 becomes read : array × int → data.

write/3 becomes write : array × int × data→ array .

Variables: x : data

Only one declaration per function/predicate/variable symbol.

All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, intA.

Interpretations of function and predicate symbols correspond

to their declarations: readA : arrayA × intA → dataA

116

Extensions

If we consider combinations of theories with shared sorts but

disjoint function and predicate symbols, then we get essentially

the same combination results as before.

However, stable infiniteness and/or convexity are only required

for the shared sorts.

117

Extensions

Non-stably infinite theories:

If we impose stronger conditions on one theory, we can relax

the conditions on the other one.

For instance, EUF can be combined with any other theory;

stable infiniteness is not required.

118

Extensions

Non-disjoint combinations:

Have to ensure that both decision procedures interpret shared

symbols in a compatible way.

Some results, e. g. by Ghilardi, using strong model theoretical

conditions on the theories.

119

Another Combination Method

Shostak’s method:

Applicable to combinations of EUF and solvable theories.

120

Another Combination Method

A Σ-theory T is called solvable, if there exists an effectively

computable function solve such that, for any T -equation s ≈ t:

(A) solve(s ≈ t) = ⊥ if and only if T |= ∀~x (s 6≈ t);

(B) solve(s ≈ t) = ∅ if and only if T |= ∀~x (s ≈ t);

and otherwise

(C) solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un}, where

– the xi are pairwise different variables occurring in s ≈ t;

– the xi do not occur in the uj ; and

– T |= ∀~x ((s ≈ t) ↔ ∃~y (x1 ≈ u1 ∧ . . . ∧ xn ≈ un)),

where ~y are the variables occurring in one of the uj but

not in s ≈ t, and ~x ∩ ~y = ∅.

121

Another Combination Method

Additionally useful (but not required):

A canonizer, that is, a function that simplifies terms by

computing some unique normal form

122

Another Combination Method

Main idea of the procedure:

If s ≈ t is a positive equation and

solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un},

replace s ≈ t by x1 ≈ u1 ∧ . . . ∧ xn ≈ un

and use these equations to eliminate the xi elsewhere.

Practical problem:

Solvability is a rather restrictive condition.

123

Part 2: Satisfiability Modulo Theories (SMT)

So far:

decision procedures for satisfiability for various fragments of

first-order theories;

often only for ground conjunctions of literals.

Goals:

extend decision procedures efficiently to ground CNF formulas;

later: extend to non-ground formulas

(we will often lose completeness, however).

124

2.1 The CDCL(T) Procedure

Goal:

Given a propositional formula in CNF (or alternatively, a finite

set N of clauses), where the atoms represent ground formulas

over some theory T , check whether it is satisfiable in T (and

optionally: output one solution, if it is satisfiable).

Assumption:

As in the propositional case, clauses contain neither duplicated

literals nor complementary literals.

125

The CDCL(T) Procedure

For propositional CDCL (“Conflict-Driven Clause Learning”),

we have considered partial valuations, i. e., partial mappings

from propositional variables to truth values.

A partial valuation A corresponds to a set M of literals that

does not contain complementary literals, and vice versa:

A(L) is true, if L ∈ M .

A(L) is false, if L ∈ M .

A(L) is undefined, if neither L ∈ M nor L ∈ M .

126

The CDCL(T) Procedure

We will now consider partial mappings from ground T -atoms to

truth values (which correspond to sets of T -literals).

In order to check whether a (partial) valuation is permissible, we

identify the valuation A or the set M with the conjunction of all

literals in M :

The valuation A or the set M is called T -satisfiable, if the

literals in M have a T -model.

127

The CDCL(T) Procedure

Since the elements of M can be interpreted both as propositional

variables and as ground T -formulas, we have to distinguish

between two notions of entailment:

We write M |= F if F is entailed by M propositionally.

We write M |=T F if the ground T -formulas represented by M

entail F .

M is called a T -model of F , if it is T -satisfiable and M |= F .

We write F |=T G , if the formula F entails G w. r. t. T , that is,

if every T -model of F is also a model of G .

128

Idea

Naive Approach:

Use CDCL to find a propositionally satisfying valuation.

If the valuation found is T -satisfiable, stop;

otherwise continue CDCL search.

Note: The CDCL procedure may not use “pure literal” checks.

129

Idea

Improvements:

Check already partial valuations for T -satisfiability.

If T -decision procedure yields explanations,

use them for non-chronological backjumping.

If T -decision procedure can provide T -entailed literals,

use them for propagation.

Since T -satisfiability checks may be costly,

learn clauses that incorporate useful T -knowledge,

in particular explanations for backjumping.

130

CDCL(T)

The “CDCL Modulo Theories” procedure is modelled by a

transition relation ⇒CDCL(T) on a set of states.

States:

• fail

• M ‖ N,

where M is a list of annotated literals (“trail”)

and N is a set of clauses.

Annotated literal:

• L: deduced literal, due to propagation.

• Ld: decision literal (guessed literal).

131

CDCL(T) Rules from CDCL

Unit Propagate:

M ‖ N ∪ {C ∨ L} ⇒CDCL(T) M L ‖ N ∪ {C ∨ L}

if C is false under M and L is undefined under M .

Decide:

M ‖ N ⇒CDCL(T) M Ld ‖ N

if L is undefined under M .

Fail:

M ‖ N ∪ {C} ⇒CDCL(T) fail

if C is false under M and M contains no decision literals.

132

Specific CDCL(T) Rules

T -Learn:

M ‖ N ⇒CDCL(T) M ‖ N ∪ {C}

if N |=T C and each atom of C occurs in N or M .

T -Forget:

M ‖ N ∪ {C} ⇒CDCL(T) M ‖ N

if N |=T C .

T -Propagate:

M ‖ N ⇒CDCL(T) M L ‖ N

if M |=T L where L is undefined in M , and L or L occurs in N.

133

Specific CDCL(T) Rules

T -Backjump:

M ′ Ld M ′′ ‖ N ⇒CDCL(T) M ′ L′ ‖ N

if M ′ Ld M ′′ |= ¬C for some C ∈ N

and if there is some “backjump clause” C ′ ∨ L′ such that

N |=T C ′ ∨ L′ and M ′ |= ¬C ′,

L′ is undefined under M ′, and

L′ or L′ occurs in N or in M ′ Ld M ′′.

Note: We don’t need a special rule to handle the case that

M ′ Ld M ′′ |=T ⊥. If the trail contains a T -inconsistent subset,

we can always add the negation of that subset using T -Learn

and apply T -Backjump afterwards.

134

CDCL(T) Properties

The system CDCL(T) consists of the rules Decide, Fail, Unit

Propagate, T -Propagate, T -Backjump, T -Learn and T -Forget.

Lemma 2.1:

If we reach a state M ‖ N starting from ∅ ‖ N, then:

(1) M does not contain complementary literals.

(2) Every deduced literal L in M follows from T , N, and decision

literals occurring before L in M .

135

CDCL(T) Properties

Lemma 2.2:

If no clause is learned infinitely often, then every derivation

starting from ∅ ‖ N terminates.

136

CDCL(T) Properties

Lemma 2.3:

If ∅ ‖ N ⇒∗
CDCL(T) M ‖ N′ and there is some conflicting clause

in M ‖ N′, that is, M |= ¬C for some clause C in N′, then

either Fail or T -Backjump applies to M ‖ N′.

137

CDCL(T) Properties

Lemma 2.4:

If ∅ ‖ N ⇒∗
CDCL(T) M ‖ N′ and M is T -unsatisfiable, then

either there is a conflicting clause in M ‖ N′, or else T -Learn

applies to M ‖ N′, generating a conflicting clause.

138

CDCL(T) Properties

Theorem 2.5:

Consider a derivation ∅ ‖ N ⇒∗
CDCL(T) S , where no more rules

of the CDCL(T) procedure are applicable to S except T -Learn or

T -Forget, and if S has the form M ‖ N′ then M is T -satisfiable.

Then

(1) S is fail iff N is T -unsatisfiable.

(2) If S has the form M ‖ N′, then M is a T -model of N.

139

The Solver Interface

The general CDCL(T) procedure has to be connected to

a “Solver” for T , a theory module that performs at least

T -satisfiability checks.

The solver is initialized with a list of all literals occurring in the

input of the CDCL(T) procedure.

Internally, it keeps a stack I of theory literals that is initially

empty. The solver performs the following operations on I :

140

The Solver Interface

SetTrue(L: T -Literal):

Check whether I ∪ {L} is T -satisfiable.

If no: return an explanation for L, that is, a subset J of I such

that J |=T L.

If yes: push L on I .

Optionally: Return a list of literals that are T -consequences

of I ∪ {L} (and have not yet been detected before).

Note: Depending on T , detecting (all) T -consequences may

be very cheap or very expensive.

141

The Solver Interface

Backtrack(n: N):

Pop n literals from I .

142

The Solver Interface

Explanation(L: T -Literal):

Return an explanation for L, that is, a subset J of I such that

J |=T L.

We assume that L has been returned previously as a result of

some SetTrue(L′) operation.

No literal of J may occur in I after L′.

143

Computing Backjump Clauses

Backjump clauses for a conflict can then be computed as in the

propositional case:

Start with the conflicting clause.

Resolve with the clauses used for Unit Propagate or the

explanations produced by the solver until a backjump clause

(or ⊥) is found.

144

2.2 Heuristic Instantiation

CDCL(T) is limited to ground (or existentially quantified)

formulas. Even if we have decidability for more than the ground

fragment of a theory T , we cannot use this in CDCL(T).

Most current SMT implementations offer a limited support for

universally quantified formulas by heuristic instantiation.

145

Heuristic Instantiation

Goal:

Create potentially useful ground instances of universally

quantified clauses and add them to the given ground clauses.

Idea (Detlefs, Nelson, Saxe: Simplify):

Select subset of the terms (or atoms) in ∀~x C as “trigger”

(automatically, but can be overridden manually).

If there is a ground instance Cθ of ∀~x C such that tθ occurs

(modulo congruence) in the current set of ground clauses for

every t ∈ trigger(C), add Cθ to the set of ground clauses

(incrementally).

146

Heuristic Instantiation

Conditions for trigger terms (or atoms):

(1) Every quantified variable of the clause occurs in some

trigger term (therefore more than one trigger term may be

necessary).

(2) A trigger term is not a variable itself.

(3) A trigger is not explicitly forbidden by the user.

(4) There is no larger instance of the term in the formula:

(If f (x) were selected as a trigger in ∀x P(f (x), f (g(x))), a

ground term f (a) would produce an instance P(f (a), f (g(a))),

which would produce P(f (g(a)), f (g(g(a)))), and so on.)

(5) No proper subterm satisfies (1)–(4).

147

Heuristic Instantiation

Also possible (but expensive, therefore only in restricted form):

Theory matching

The ground atom P(a) is not an instance of the trigger

atom P(x + 1); it is however equivalent (in linear algebra)

to P((a − 1) + 1), which is an instance and may therefore

produce a new ground clause.

148

Heuristic Instantiation

Heuristic instantiation is obviously incomplete

e. g., it does not find the contradiction for f (x , a) ≈ x ,

f (b, y) ≈ y , a 6≈ b

but it is quite useful in practice:

modern implementations: CVC, Yices, Z3.

149

2.3 Local Theory Extensions

Under certain circumstances, instantiating universally quan-

tified variables with “known” ground terms is sufficient for

completeness.

Scenario:

Σ0 = (Ω0, Π0): base signature;

T0: Σ0-theory.

Σ1 = (Ω0 ∪ Ω1, Π0): signature extension;

K : universally quantified Σ1-clauses;

G : ground clauses.

150

Local Theory Extensions

Assumption: clauses in G are Σ1-flat and Σ1-linear:

only constants as arguments of Ω1-symbols,

if a constant occurs in two terms below an Ω1-symbol, then

the two terms are identical,

no term contains the same constant twice below an Ω1-symbol.

151

Local Theory Extensions

Example: Monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f /1}.

K = { ∀x , y (¬x ≤ y ∨ f (x) ≤ f (y)) }.

G = { f (3) ≥ 6, f (5) ≤ 9 }.

Observation: If we choose interpretations for f (3) and f (5)

that satisfy the G and monotonicity axiom, then it is always

possible to define f for all remaining integers such that the

monotonicity axiom is satisfied.

152

Local Theory Extensions

Example: Strictly monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f /1}.

K = { ∀x , y (¬x < y ∨ f (x) < f (y)) }.

G = { f (3) > 6, f (5) < 9 }.

Observation: Even though we can choose interpretations for

f (3) and f (5) that satisfy G and the strict monotonicity

axiom (map f (3) to 7 and f (5) to 8), we cannot define f (4)

such that the strict monotonicity axiom is satisfied.

153

Local Theory Extensions

To formalize the idea, we need partial algebras:

like (usual) total algebras, but fA may be a partial function.

154

Local Theory Extensions

There are several ways to define equality in partial algebras

(strong equality, Evans equality, weak equality, etc.). Here we

use weak equality:

an equation s ≈ t holds w. r. t. A and β if both A(β)(s) and

A(β)(t) are defined and equal or if at least one of them is

undefined;

a negated equation s 6≈ t holds w. r. t. A and β if both

A(β)(s) and A(β)(t) are defined and different or if at least

one of them is undefined.

If a partial algebra A satisfies a set of formulas N w. r. t. weak

equality, it is called a weak partial model of N.

155

Local Theory Extensions

A partial algebra A embeds weakly into a partial algebra B if

there is an injective total mapping h : UA → UB such that

if fA(a1, . . . , an) is defined in A then fB(h(a1), . . . , h(an)) is

defined in B and equal to h(fA(a1, . . . , an)).

156

Local Theory Extensions

A theory extension T0 ⊆ T0 ∪ K is called local, if for every set

G , T0 ∪ K ∪ G is satisfiable if and only if T0 ∪ K [G] ∪ G has a

(partial) model, where K [G] is the set of instances of clauses

in K in which all terms starting with an Ω1-symbol are ground

terms occurring in K or G .

If every weak partial model of T0 ∪ K can be embedded into a

a total model, then the theory extension T0 ⊆ T0 ∪ K is local

(Sofronie-Stokkermans 2005).

Note: There are many variants of partial models and embeddings

corresponding to different kinds of locality.

157

Local Theory Extensions

Examples of local theory extensions:

free functions,

constructors/selectors,

monotonic functions,

Lipschitz functions.

158

2.4 Goal-driven Instantiation

Instantiation is used to refute the current model discovered by

the ground solver.

Rather than a fast but loosely guided instantiation technique,

we can search for the most suitable instance if it exists.

159

Goal-driven Instantiation

Scenario:

M : a model of the ground formula returned by the ground

SMT solver.

Q: the set of universally quantified clauses contained in the

original input.

Problem:

Find a clause ∀x C ∈ Q and a grounding substitution σ such

that M ∪ Cσ is unsatisfiable, if it exists.

160

E-ground (Dis)unification Problem

Given

E : a set of ground equality literals,

N: a set of equality literals,

find σ such that E |= Nσ.

161

E-ground (Dis)unification Problem

The E-ground (dis)unification problem can be used to encode

the goal-driven instantiation problem:

For M and each ∀x C ∈ Q, try to solve the E-ground

(dis)unification problem M |= (¬C)σ.

162

Congruence Closure with Free Variables

CCFV (Barbosa et al, 2017) decomposes N into sets of smaller

constraints by replacing terms with equivalent smaller ones until

either

1. a variable assignment is possible, and the decomposition

restarts afterwards,

2. a contradiction occurs, and the corresponding search branch

is closed,

3. a substitution satisfying the problem is found.

163

Congruence Closure with Free Variables

CCFV is sound, complete and terminating for the E-ground

(dis)unification problem.

Modern implementations: CVC4, VeriT.

164

Part 3: Superposition

First-order calculi considered so far:

Resolution: for first-order clauses without equality.

(Unfailing) Knuth-Bendix Completion: for unit equations.

Goal:

Combine the ideas of ordered resolution (overlap maximal

literals in a clause) and Knuth-Bendix completion (overlap

maximal sides of equations) to get a calculus for equational

clauses.

165

3.1 Recapitulation

First-order logic:

Atom: either P(s1, . . . , sm) with P ∈ Π or s ≈ t.

Literal: Atom or negated atom.

Clause: (possibly empty) disjunction of literals

(all variables implicitly universally quantified).

166

Recapitulation

Refutational theorem proving:

For refutational theorem proving, it is sufficient to consider

sets of clauses:

every first-order formula F can be translated into a set of

clauses N such that F is unsatisfiable if and only if N is

unsatisfiable.

In the non-equational case, unsatisfiability can for instance be

checked using the (ordered) resolution calculus.

167

Recapitulation

(Ordered) resolution: inference rules:

Ground case: Non-ground case:

Resolution:
D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

D′ ∨ A C ′ ∨ ¬A′

(D′ ∨ C ′)σ

where σ = mgu(A,A′).

Factoring:
C ′ ∨ A ∨ A

C ′ ∨ A

C ′ ∨ A ∨ A′

(C ′ ∨ A)σ

where σ = mgu(A,A′).

168

Recapitulation

Ordering restrictions:

Let ≻ be a well-founded and total ordering on ground atoms.

Literal ordering ≻L:

compares literals by comparing lexicographically first the

respective atoms using ≻ and then their polarities

(negative > positive).

Clause ordering ≻C :

compares clauses by comparing their multisets of literals using

the multiset extension of ≻L.

169

Recapitulation

Ordering restrictions (ground case):

Inference are necessary only if the following conditions are

satisfied:

– The left premise of a Resolution inference is not larger

than or equal to the right premise.

– The literals that are involved in the inferences ([¬] A) are

maximal in the respective clauses

(strictly maximal for the left premise of Resolution).

170

Recapitulation

Ordering restrictions (non-ground case):

Define the atom ordering ≻ also for non-ground atoms.

Need stability under substitutions: A ≻ B implies Aσ ≻ Bσ.

Note: ≻ cannot be total on non-ground atoms.

For literals involved in inferences we have the same maximality

requirements as in the ground case.

171

Recapitulation

Resolution is (even with ordering restrictions) refutationally

complete:

Dynamic view of refutational completeness:

If N is unsatisfiable (N |= ⊥) then fair derivations from N

produce ⊥.

Static view of refutational completeness:

If N is saturated, then N is unsatisfiable if and only if ⊥ ∈ N.

172

Recapitulation

Proving refutational completeness for the ground case:

We have to show:

If N is saturated (i. e., if sufficiently many inferences have

been computed), and ⊥ /∈ N, then N is satisfiable

(i. e., has a model).

173

Recapitulation

Constructing a candidate interpretation:

Suppose that N be saturated and ⊥ /∈ N.

We inspect all clauses in N in ascending order and construct a

sequence of Herbrand interpretations

(starting with the empty interpretation: all atoms are false).

If a clause C is false in the current interpretation, and has a

positive and strictly maximal literal A, then extend the current

interpretation such that C becomes true: add A to the current

interpretation. (Then C is called productive.)

Otherwise, leave the current interpretation unchanged.

174

Recapitulation

The sequence of interpretations has the following properties:

(1) If an atom is true in some interpretation, then it remains

true in all future interpretations.

(2) If a clause is true at the time where it is inspected, then it

remains true in all future interpretations.

(3) If a clause C = C ′ ∨ A is productive, then C remains true

and C ′ remains false in all future interpretations.

Show by induction: if N is saturated and ⊥ /∈ N, then every

clause in N is either true at the time where it is inspected or

productive.

175

Recapitulation

Note:

For the induction proof, it is not necessary that the conclusion

of an inference is contained in N.

It is sufficient that it is redundant w. r. t. N.

N is called saturated up to redundancy if the conclusion of

every inference from clauses in N \ Red(N) is contained in

N ∪ Red(N).

176

Recapitulation

Proving refutational completeness for the non-ground case:

If Ciθ is a ground instance of the clause Ci for i ∈ {0, . . . , n}

and

Cn, . . . ,C1

C0

and

Cnθ, . . . ,C1θ

C0θ

are inferences, then the latter inference is called a ground

instance of the former.

177

Recapitulation

For a set N of clauses, let GΣ(N) be the set of all ground

instances of clauses in N.

Construct the interpretation from the set GΣ(N) of all ground

instances of clauses in N:

N is saturated and does not contain ⊥

⇒ GΣ(N) is saturated and does not contain ⊥

⇒ GΣ(N) has a Herbrand model I

⇒ I is a model of N.

178

Recapitulation

It is possible to encode an arbitrary predicate P using a function

fP and a new constant true:

P(t1, . . . , tn) ❀ fP(t1, . . . , tn) ≈ true

¬ P(t1, . . . , tn) ❀ ¬ fP(t1, . . . , tn) ≈ true

In equational logic it is therefore sufficient to consider the case

that Π = ∅, i. e., equality is the only predicate symbol.

Abbreviation: s 6≈ t instead of ¬ s ≈ t.

179

3.2 The Superposition Calculus – Informally

Conventions:

From now on: Π = ∅ (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality

symbol.

We will first explain the ideas and motivations behind the

superposition calculus and its completeness proof. Precise

definitions will be given later.

180

The Superposition Calculus – Informally

Ground inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] 6≈ s′

D′ ∨ C ′ ∨ s[t′] 6≈ s′

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

(Note: We will need one further inference rule.)

181

The Superposition Calculus – Informally

Ordering wishlist:

Like in resolution, we want to perform only inferences

between (strictly) maximal literals.

Like in completion, we want to perform only inferences

between (strictly) maximal sides of literals.

Like in resolution, in inferences with two premises,

the left premise should not be larger than the right one.

Like in resolution and completion, the conclusion should then

be smaller than the larger premise.

The ordering should be total on ground literals.

182

The Superposition Calculus – Informally

Consequences:

The literal ordering must depend primarily on the larger term

of an equation.

As in the resolution case, negative literals must be a bit larger

than the corresponding positive literals.

Additionally, we need the following property:

If s ≻ t ≻ u, then s 6≈ u must be larger than s ≈ t.

In other words, we must compare first the larger term, then

the polarity, and finally the smaller term.

183

The Superposition Calculus – Informally

The following construction has the required properties:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t},

to a negative literal s 6≈ t the multiset {s, s, t, t}.

The literal ordering ≻L compares these multisets using the

multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their

multisets of literals using the multiset extension of ≻L.

184

The Superposition Calculus – Informally

Constructing a candidate interpretation:

We want to use roughly the same ideas as in the completeness

proof for resolution.

But: a Herbrand interpretation does not work for equality:

The equality symbol ≈ must be interpreted by equality in the

interpretation.

185

The Superposition Calculus – Informally

Solution: Productive clauses contribute ground rewrite rules

to a TRS R.

The interpretation has the universe TΣ(∅)/R = TΣ(∅)/≈R ;

a ground atom s ≈ t holds in the interpretation,

if and only if s ≈R t if and only if s ↔∗
R t.

We will construct R in such a way that it is terminating

and confluent. In this case, s ≈R t if and only if s ↓R t.

186

The Superposition Calculus – Informally

One problem:

The completeness proof for the resolution calculus depends on

the following property:

If C = C ′ ∨ A with a strictly maximal and positive literal A

is false in the current interpretation, then adding A to the

current interpretation cannot make any literal of C ′ true.

This property does not hold for superposition:

Let b ≻ c ≻ d .

Assume that the current rewrite system (representing the

current interpretation) contains the rule c → d .

Now consider the clause b ≈ d ∨ b ≈ c .
187

The Superposition Calculus – Informally

We need a further inference rule to deal with clauses of this

kind, either the “Merging Paramodulation” rule of Bachmair

and Ganzinger or the following “Equality Factoring” rule due to

Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

Note: This inference rule subsumes the usual factoring rule.

188

The Superposition Calculus – Informally

How do the non-ground versions of the inference rules for

superposition look like?

Main idea as in the resolution calculus:

Replace identity by unifiability.

Apply the mgu to the resulting clause.

In the ordering restrictions, use 6� instead of ≻.

189

The Superposition Calculus – Informally

However:

As in Knuth-Bendix completion, we do not want to consider

overlaps at or below a variable position.

Consequence: there are inferences between ground instances

Dθ and Cθ of clauses D and C which are not ground instances

of inferences between D and C .

Such inferences have to be treated in a special way in the

completeness proof.

190

3.3 The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the

superposition calculus and its completeness proof.

We will now start again from the beginning giving precise

definitions and proofs.

191

The Superposition Calculus – Formally

Inference rules (part 1):

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and

u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and

u is not a variable.

192

The Superposition Calculus – Formally

Inference rules (part 2):

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

193

The Superposition Calculus – Formally

Theorem 3.1:

All inference rules of the superposition calculus are correct, i. e.,

for every rule

Cn, . . . ,C1

C0

we have {C1, . . . ,Cn} |= C0.

Proof:

Exercise. ✷

194

The Superposition Calculus – Formally

Orderings:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t},

to a negative literal s 6≈ t the multiset {s, s, t, t}.

The literal ordering ≻L compares these multisets using the

multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their

multisets of literals using the multiset extension of ≻L.

195

The Superposition Calculus – Formally

Inferences have to be computed only if the following ordering

restrictions are satisfied (after applying the unifier to the

premises):

– In superposition inferences, the left premise is not greater

than or equal to the right one.

– The last literal in each premise is maximal in the respective

premise, i. e., there exists no greater literal

(strictly maximal for positive literals in superposition

inferences, i. e., there exists no greater or equal literal).

– In these literals, the lhs is neither smaller nor equal than the

rhs (except in equality resolution inferences).

196

The Superposition Calculus – Formally

A ground clause C is called redundant w. r. t. a set of ground

clauses N, if it follows from clauses in N that are smaller than C .

A clause is redundant w. r. t. a set of clauses N, if all its ground

instances are redundant w. r. t. GΣ(N).

The set of all clauses that are redundant w. r. t. N is denoted by

Red(N).

N is called saturated up to redundancy, if the conclusion of

every inference from clauses in N \ Red(N) is contained in

N ∪ Red(N).

197

3.4 Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E -interpretation

(or E -algebra) with universe { [t] | t ∈ TΣ(∅) }.

One can show (similar to the proof of Birkhoff’s Theorem) that

for every ground equation s ≈ t we have TΣ(∅)/E |= s ≈ t if

and only if s ↔∗
E t.

In particular, if E is a convergent set of rewrite rules R and

s ≈ t is a ground equation, then TΣ(∅)/R |= s ≈ t if and only

if s ↓R t. By abuse of terminology, we say that an equation or

clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.

198

Superposition: Refutational Completeness

Construction of candidate interpretations

(Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing ⊥.

Using induction on the clause ordering we define sets of rewrite

rules EC and RC for all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N)

with D ≺C C . Then RC =
⋃

D≺CC
ED .

199

Superposition: Refutational Completeness

The set EC contains the rewrite rule s → t, if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C .

(c) s ≻ t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s → t}.

(f) s is irreducible w. r. t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N) ED .

200

Superposition: Refutational Completeness

Lemma 3.2:

If EC = {s → t} and ED = {u → v}, then s ≻ u if and only if

C ≻C D.

Corollary 3.3:

The rewrite systems RC and R∞ are convergent (i. e., terminating

and confluent).

201

Superposition: Refutational Completeness

Lemma 3.4:

If D �C C and EC = {s → t}, then s ≻ u for every term u

occurring in a negative literal in D and s � u for every term u

occurring in a positive literal in D.

Corollary 3.5:

If D ∈ GΣ(N) is true in RD , then D is true in R∞ and RC for all

C ≻C D.

Corollary 3.6:

If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true

in R∞ and RC for all C ≻C D.

202

Superposition: Refutational Completeness

Lemma 3.7 (“Lifting Lemma”):

Let C be a clause and let θ be a substitution such that Cθ

is ground. Then every equality resolution or equality factoring

inference from Cθ is a ground instance of an inference from C .

Proof:

Exercise. ✷

203

Superposition: Refutational Completeness

Lemma 3.8 (“Lifting Lemma”):

Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be two clauses

(without common variables) and let θ be a substitution such

that Dθ and Cθ are ground.

If there is a superposition inference between Dθ and Cθ where

uθ and some subterm of sθ are overlapped, and uθ does not

occur in sθ at or below a variable position of s, then the

inference is a ground instance of a superposition inference from

D and C .

Proof:

Exercise. ✷

204

Superposition: Refutational Completeness

Theorem 3.9 (“Model Construction”):

Let N be a set of clauses that is saturated up to redundancy

and does not contain the empty clause. Then we have for every

ground clause Cθ ∈ GΣ(N):

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) If Cθ is redundant w. r. t. GΣ(N), then it is true in RCθ.

(iii) Cθ is true in R∞ and in RD for every D ∈ GΣ(N) with

D ≻C Cθ.

205

Superposition: Refutational Completeness

A Σ-interpretationA is called term-generated, if for every b ∈ UA

there is a ground term t ∈ TΣ(∅) such that b = A(β)(t).

Lemma 3.10:

Let N be a set of (universally quantified) Σ-clauses and let A be

a term-generated Σ-interpretation. Then A is a model of GΣ(N)

if and only if it is a model of N.

206

Superposition: Refutational Completeness

Theorem 3.11 (Refutational Completeness: Static View):

Let N be a set of clauses that is saturated up to redundancy.

Then N has a model if and only if N does not contain the empty

clause.

207

Superposition: Refutational Completeness

So far, we have considered only inference rules that add new

clauses to the current set of clauses

(corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form

N0 ⊢ N1 ⊢ N2 ⊢ . . . , where each Ni+1 is obtained from Ni by

adding the consequence of some inference from clauses in Ni .

Under which circumstances are we allowed to delete (or simplify)

a clause during the derivation?

208

Superposition: Refutational Completeness

A run of the superposition calculus is a sequence

N0 ⊢ N1 ⊢ N2 ⊢ . . . , such that

(i) Ni |= Ni+1, and

(ii) all clauses in Ni \ Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it

follows from the old ones, and we may delete a clause, if it is

redundant w. r. t. the remaining ones.

For a run, N∞ =
⋃

i≥0 Ni and N∗ =
⋃

i≥0

⋂

j≥i Nj .

The set N∗ of all persistent clauses is called the limit of the run.

209

Superposition: Refutational Completeness

Lemma 3.12:

If N ⊆ N′, then Red(N) ⊆ Red(N′).

Proof:

Obvious. ✷

210

Superposition: Refutational Completeness

Lemma 3.13:

If N′ ⊆ Red(N), then Red(N) ⊆ Red(N \ N′).

Proof:

Follows from the compactness of first-order logic and the

well-foundedness of the multiset extension of the clause ordering.

✷

211

Superposition: Refutational Completeness

Lemma 3.14:

Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a run.

Then Red(Ni) ⊆ Red(N∞) and Red(Ni) ⊆ Red(N∗) for every i .

Proof:

Exercise. ✷

212

Superposition: Refutational Completeness

Corollary 3.15:

Ni ⊆ N∗ ∪ Red(N∗) for every i .

Proof:

If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1,

so C must be redundant w. r. t. Nk+1.

Consequently, C is redundant w. r. t. N∗. ✷

213

Superposition: Refutational Completeness

A run is called fair, if the conclusion of every inference from

clauses in N∗ \ Red(N∗) is contained in some Ni ∪ Red(Ni).

Lemma 3.16:

If a run is fair, then its limit is saturated up to redundancy.

Proof:

If the run is fair, then the conclusion of every inference from

non-redundant clauses in N∗ is contained in some Ni ∪ Red(Ni),

and therefore contained in N∗ ∪ Red(N∗).

Hence N∗ is saturated up to redundancy. ✷

214

Superposition: Refutational Completeness

Theorem 3.17 (Refutational Completeness: Dynamic View):

Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a fair run, let N∗ be its limit.

Then N0 has a model if and only if ⊥ /∈ N∗.

215

3.5 Improvements and Refinements

The superposition calculus as described so far can be improved

and refined in several ways.

216

Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive

(experimental evaluations are needed to see what pays off in

practice).

Often a clause can be made redundant by adding another clause

that is entailed by the existing ones.

This process is called simplification.

217

Concrete Redundancy and Simplification Criteria

Examples:

Subsumption:

If N contains clauses D and C = C ′ ∨ Dσ, where C ′ is

non-empty, then D subsumes C and C is redundant.

Example:

f (x) ≈ g(x) subsumes f (y) ≈ a ∨ f (h(y)) ≈ g(h(y)).

218

Concrete Redundancy and Simplification Criteria

Examples:

Trivial literal elimination:

Duplicated literals and trivially false literals can be deleted:

A clause C ′ ∨ L ∨ L can be simplified to C ′ ∨ L;

a clause C ′ ∨ s 6≈ s can be simplified to C ′.

219

Concrete Redundancy and Simplification Criteria

Examples:

Condensation:

If we obtain a clause D from C by applying a substitution,

followed by deletion of duplicated literals, and if D subsumes

C , then C can be simplified to D.

Example:

By applying {y → g(x)} to C = f (g(x)) ≈ a ∨ f (y) ≈ a

and deleting the duplicated literal, we obtain f (g(x)) ≈ a,

which subsumes C .

220

Concrete Redundancy and Simplification Criteria

Examples:

Semantic tautology deletion:

Every clause that is a tautology is redundant. Note that in

the non-equational case, a clause is a tautology if and only

if it contains two complementary literals, whereas in the

equational case we need a congruence closure algorithm to

detect that a clause like x 6≈ y ∨ f (x) ≈ f (y) is tautological.

221

Concrete Redundancy and Simplification Criteria

Examples:

Rewriting:

If N contains a unit clause D = s ≈ t and a clause C [sσ],

such that sσ ≻ tσ and C ≻C Dσ, then C can be simplified

to C [tσ].

Example:

If D = f (x , x) ≈ g(x) and C = h(f (g(y), g(y))) ≈ h(y), and

≻ is an LPO with h > f > g , then C can be simplified to

h(g(g(y))) ≈ h(y).

222

Selection Functions

Like the ordered resolution calculus, superposition can be used

with a selection function that overrides the ordering restrictions

for negative literals.

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

We indicate selected literals by a box:

¬f (x) ≈ a ∨ g(x , y) ≈ g(x , z)

223

Selection Functions

The second ordering condition for inferences is replaced by

– The last literal in each premise is either selected, or there is

no selected literal in the premise and the literal is maximal

in the premise (strictly maximal for positive literals in

superposition inferences).

In particular, clauses with selected literals can only be used

in equality resolution inferences and as the second premise in

negative superposition inferences.

224

Selection Functions

Refutational completeness is proved essentially as before:

We assume that each ground clause in GΣ(N) inherits the

selection of one of the clauses in N of which it is a ground

instance (there may be several ones!).

In the proof of the model construction theorem, we replace

case 3 by “Cθ contains a selected or maximal negative literal”

and case 4 by “Cθ contains neither a selected nor a maximal

negative literal”.

In addition, for the induction proof of this theorem we need

one more property, namely:

(iv) If Cθ has selected literals then ECθ = ∅.

225

Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

N is saturated up to redundancy, if the conclusion of

every inference from clauses in N \ Red(N) is contained in

N ∪ Red(N).

This definition ensures that in the proof of the model construction

theorem, the conclusion C0θ of a ground inference follows from

clauses in GΣ(N) that are smaller than or equal to itself,

hence they are smaller than the premise Cθ of the inference,

hence they are true in RCθ by induction.

226

Redundant Inferences

However, a closer inspection of the proof shows that it is actually

sufficient that the clauses from which C0θ follows are smaller

than Cθ – it is not necessary that they are smaller than C0θ

itself.

This motivates the following definition of redundant inferences:

A ground inference with conclusion C0 and right (or only)

premise C is called redundant w. r. t. a set of ground clauses

N, if one of its premises is redundant w. r. t. N, or if C0 follows

from clauses in N that are smaller than C .

An inference is redundant w. r. t. a set of clauses N, if all its

ground instances are redundant w. r. t. GΣ(N).

227

Redundant Inferences

Recall that a clause can be redundant w. r. t. N without being

contained in N.

Analogously, an inference can be redundant w. r. t. N without

being an inference from clauses in N.

The set of all inferences that are redundant w. r. t. N is denoted

by RedInf (N).

228

Redundant Inferences

Saturation is then redefined in the following way:

N is saturated up to redundancy, if every inference from clauses

in N is redundant w. r. t. N.

Using this definition, the model construction theorem can be

proved essentially as before.

229

Redundant Inferences

The connection between redundant inferences and clauses is

given by the following lemmas. They are proved in the same way

as the corresponding lemmas for redundant clauses:

Lemma 3.18:

If N ⊆ N′, then RedInf (N) ⊆ RedInf (N′).

Lemma 3.19:

If N′ ⊆ Red(N), then RedInf (N) ⊆ RedInf (N \ N′).

230

3.6 Splitting

Motivation:

A clause like f (x) ≈ a ∨ g(y) ≈ b has rather undesirable

properties in the superposition calculus: It does not have

negative literals that one could select; it does not have

a unique maximal literal; moreover, after performing a

superposition inference with this clause, the conclusion often

does not have a unique maximal literal either.

On the other hand, the two unit clauses f (x) ≈ a and

g(y) ≈ b have much nicer properties.

231

Splitting with Backtracking

If a clause ∀~x ,~y C1(~x) ∨ C2(~y) consists of two non-empty

variable-disjoint subclauses, then it is equivalent to the

disjunction
(
∀~x C1(~x)

)
∨

(
∀~y C2(~y)

)
.

In this case, superposition derivations can branch in a tableau-like

manner:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

where C1 and C2 do not have common variables.

If ⊥ is found on the left branch, backtrack to the right one.

232

Splitting with Backtracking

If C1 is ground, the general rule can be improved:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2} ∪ {¬C1}

where C1 is ground.

Note:

¬C1 denotes the conjunction of all negations of literals in C1.

233

Splitting with Backtracking

In practice: most useful if both subclauses contain at least one

positive literal.

234

Implementing Splitting

Most clauses that are derived after a splitting step do not

depend on the split clause.

It is unpractical to delete them as soon as one branch is closed

and to recompute them in the other branch afterwards.

Solution: Associate a label set L to every clause C that indicates

on which splits it depends.

Inferences:
C2 ← L2 C1 ← L1

C0 ← L2 ∪ L1

235

Implementing Splitting

If we derive ⊥ ← L in one branch:

Determine the last split in L.

Backtrack to the corresponding right branch.

Keep those clauses that are still valid on the right branch.

Restore clauses that have been simplified if the simplifying

clause is no longer valid on the right branch.

Additionally: Delete splittings that did not contribute to the

contradiction (branch condensation).

236

AVATAR

Superposition with splitting has some similarity with CDCL.

Can we actually use CDCL?

237

AVATAR

Encoding splitting components:

Use propositional literals as labels for splitting components:

non-ground component C → prop. var. PC

positive ground component C → prop. var. PC

negative ground component C → negated prop. var. ¬PC

Therefore: splittable clauses → propositional clauses.

238

AVATAR

Implementation:

Combine a CDCL solver and a superposition prover.

The superposition prover passes splittable clauses and labelled

empty clauses to the CDCL solver.

If the CDCL solver finds contradiction: input contradictory.

Otherwise the CDCL solver extracts a boolean model and

passes the associated labelled clauses to the superposition

prover.

239

3.7 Constraint Superposition

So far:

Refutational completeness proof for superposition is based on

the analysis of inferences between ground instances of clauses.

Inferences between ground instances must be covered by

inferences between original clauses.

Non-ground clauses represent the set of all their ground

instances.

Do we really need all ground instances?

240

Constrained Clauses

A constrained clause is a pair (C ,K), usually written as C [[K]],

where C is a Σ-clause and K is a formula (called constraint).

Often: K is a boolean combination of ordering literals s ≻ t

with Σ-terms s, t.

(also possible: comparisons between literals or clauses).

Intuition: C [[K]] represents the set of all ground clauses Cθ

for which Kθ evaluates to true for some fixed term ordering.

Such a Cθ is called a ground instance of C [[K]].

A clause C without constraint is identified with C [[⊤]].

A constrained clause C [[⊥]] with an unsatisfiable constraint

represents no ground instances; it can be discarded.

241

Constraint Superposition

Inference rules for constrained clauses:

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ [[(K2 ∧ K1 ∧ K)σ]]

where σ = mgu(t, u) and

u is not a variable and

K = (t ≻ t′ ∧ s[u] ≻ s′

∧ (t ≈ t′) ≻C D′

∧ (s[u] ≈ s′) ≻C C ′

∧ (s[u] ≈ s′) ≻L (t ≈ t′))

The other inference rules are modified analogously.

242

Constraint Superposition

To work effectively with constrained clauses in a calculus, we

need methods to check the satisfiability of constraints:

Possible for LPO, KBO, but expensive.

If constraints become too large, we may delete some conjuncts

of the constraint. (Note that the calculus remains sound, if

constraints are replaced by implied constraints.)

243

Refutational Completeness

The refutational completeness proof for constraint superposition

looks mostly like in Sect. 3.4.

Lifting works as before, so every ground infererence that is

required in the proof is an instance of some inference from the

corresponding constrained clauses. (Easy.)

There is one significant problem, though.

244

Refutational Completeness

Case 2 in the proof of Thm. 3.9 does not work for constrained

clauses:

If we have a ground instance Cθ where xθ is reducible by RCθ,

we can no longer conclude that Cθ is true because it follows

from some rule in RCθ and some smaller ground instance Cθ′.

Example: Let C [[K]] be the clause f (x) ≈ a [[x ≻ a]], let

θ = {x 7→ b}, and assume that RCθ contains the rule b → a.

Then θ satisfies K , but θ′ = {x 7→ a} does not, so Cθ′ is not

a ground instance of C [[K]].

245

Refutational Completeness

Solution:

Assumption: We start the saturation with a set N0 of

unconstrained clauses; the limit N∗ contains constrained

clauses, though.

During the model construction, we ignore ground instances

Cθ of clauses in N∗ for which xθ is reducible by RCθ.

We obtain a model R∞ of all variable irreducible ground

instances of clauses in N∗.

246

Refutational Completeness

R∞ is also a model of all variable irreducible ground instances

of clauses in N0.

Since all clauses in N0 are unconstrained, every ground

instance of a clause in N0 follows from some rule in R∞ and

some smaller ground instance; so it is true in R∞.

Consequently, R∞ is a model of all ground instances of clauses

in N0.

247

Other Constraints

The approach also works for other kinds of constraints.

In particular, we can replace unification by equality constraints

(❀ “basic superposition”):

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

D′ ∨ C ′ ∨ s[t′] ≈ s′ [[K2 ∧ K1 ∧ K]]

where u is not a variable and

K = (t = u)

Note: In contrast to ordering constraints, these constraints are

essential for soundness.

248

The Drawback

Constraints reduce the number of required inferences; however,

they are detrimental to redundancy:

Since we consider only variable irreducible ground instances

during the model construction, we may use only such instances

for redundancy:

A clause is redundant, if all its variable irreducible ground

instances follow from smaller variable irreducible ground

instances.

Even worse, since we don’t know R∞ in advance, we must

consider variable irreducibility w. r. t. arbitrary rewrite systems.

Consequence: Not every subsumed clause is redundant!

249

3.8 Hierarchic Superposition

The superposition calculus is a powerful tool to deal with

formulas in uninterpreted first-order logic.

What can we do if some symbols have a fixed interpretation?

Can we combine superposition with decision procedures, e. g.,

for linear rational arithmetic?

Can we integrate the decision procedure as a “black box”?

250

Sorted Logic

It is useful to treat this problem in sorted logic (cf. Sect. 1.11).

A many-sorted signature Σ = (Ξ,Ω,Π) fixes an alphabet of

non-logical symbols, where

• Ξ is a set of sort symbols,

• Ω is a sets of function symbols,

• Π is a set of predicate symbols.

251

Sorted Logic

Each function symbol f ∈ Ω has a unique declaration

f : ξ1 × · · · × ξn → ξ0; each predicate symbol P ∈ Π has a

unique declaration P : ξ1 × · · · × ξn with ξi ∈ Ξ.

In addition, each variable x has a unique declaration x : ξ.

We assume that all terms, atoms, substitutions are well-sorted.

252

Sorted Logic

A many-sorted algebra A consists of

• a non-empty set ξA for each ξ ∈ Ξ,

• a function fA : ξ1,A × · · · × ξn,A → ξ0,A

for each f : ξ1 × · · · × ξn → ξ0 ∈ Ω,

• a subset PA ⊆ ξ1,A × · · · × ξn,A

for each P : ξ1 × · · · × ξn ∈ Π.

253

Hierarchic Specifications

A specification SP = (Σ, C) consists of

• a signature Σ = (Ξ,Ω,Π),

• a class of term-generated Σ-algebras C closed under

isomorphisms.

If C consists of all term-generated Σ-algebras satisfying the set

of Σ-formulas N, we write SP = (Σ,N).

254

Hierarchic Specifications

A hierarchic specification HSP = (SP ,SP ′) consists of

• a base specification SP = (Σ, C),

• an extension SP ′ = (Σ′,N′),

where Σ = (Ξ,Ω,Π), Σ′ = (Ξ′, Ω′, Π′),

Ξ ⊆ Ξ′, Ω ⊆ Ω′, and Π ⊆ Π′.

255

Hierarchic Specifications

A Σ′-algebra A is called a model of HSP = (SP ,SP ′),

if A is a model of N′ and A|Σ ∈ C,

where the reduct A|Σ is defined as ((ξA)ξ∈Ξ, (fA)f∈Ω, (PA)P∈Π).

Note:

• no confusion: models of HSP may not identify elements

that are different in the base models.

• no junk: models of HSP may not add new elements to the

interpretations of base sorts.

256

Hierarchic Specifications

Example:

Base specification: ((Ξ,Ω,Π), C), where

Ξ = {int}

Ω = { 0, 1,−1, 2,−2, . . . :→ int,

− : int → int,

+ : int × int → int }

Π = {≥ : int × int,

> : int × int }

C = isomorphy class of Z

257

Hierarchic Specifications

Example:

Extension: ((Ξ′, Ω′, Π′),N′), where

Ξ′ = Ξ ∪ {list}

Ω′ = Ω ∪ { cons : int × list → list,

length : list → int,

empty :→ list,

a :→ list }

Π′ = Π

N′ = { length(a) ≥ 1,

length(cons(x , y)) ≈ length(y) + 1 }

258

Hierarchic Specifications

Goal:

Check whether N′ has a model in which the sort int is

interpreted by Z and the symbols from Ω and Π accordingly.

259

Hierarchic Superposition

In order to use a prover for the base theory, we must preprocess

the clauses:

A term that consists only of base symbols and variables of

base sort is called a base term (analogously for atoms, literals,

clauses).

A clause C is called weakly abstracted, if every base term that

occurs in C as a subterm of a non-base term (or non-base

non-equational literal) is a variable.

Every clause can be transformed into an equivalent weakly

abstracted clause. We assume that all input clauses are weakly

abstracted.
260

Hierarchic Superposition

A substitution is called simple, if it maps every variable of a base

sort to a base term.

261

Hierarchic Superposition

The inference rules of the hierarchic superposition calculus

correspond to the rules of of the standard superposition calculus

with the following modifications:

• The term ordering ≻ must have the property that every

base ground term (or non-equational literal) is smaller than

every non-base ground term (or non-equational literal).

• We consider only simple substitutions as unifiers.

• We perform only inferences on non-base terms

(or non-base non-equational literals).

• If the conclusion of an inference is not weakly abstracted,

we transform it into an equivalent weakly abstracted clause.

262

Hierarchic Superposition

While clauses that contain non-base literals are manipulated

using superposition rules, base clauses have to be passed to the

base prover.

This yields one more inference rule:

Constraint Refutation:
M

⊥

where M is a set of base clauses

that is inconsistent w. r. t. C.

263

Problems

There are two potential problems that are harmful to refutational

completeness:

• We can only apply the constraint refutation rule to finite

sets M . If C is not compact, this is not sufficient.

• Since we only consider simple substitutions, we will only

obtain a model of all simple ground instances.

To show that we have a model of all instances, we need

an additional condition called sufficient completeness

w. r. t. simple instances.

264

Problems

A set N of clauses is called sufficiently complete with respect

to simple instances, if for every model A′ of the set of simple

ground instances of N and every ground non-base term t of a

base sort there exists a ground base term t such that t′ ≈ t is

true in A′.

Note: Sufficient completeness w. r. t. simple instances ensures

the absence of junk.

265

Problems

If the base signature contains Skolem constants, we can

sometimes enforce sufficient completeness by equating ground

extension terms with a base sort to Skolem constants.

Skolem constants may harmful to compactness, though.

266

Completeness of Hierarchic Superposition

If the base theory is compact, the hierarchic superposition

calculus is refutationally complete for sets of clauses that are

sufficiently complete with respect to simple instances (Bachmair,

Ganzinger, Waldmann, 1994; Baumgartner, Waldmann 2013).

Main proof idea: If the set of base clauses in N has some base

model, represent this model by a set E of convergent ground

equations and a set D of ground disequations.

Then show: If N is saturated w. r. t. hierarchic superposition,

then E ∪ D ∪ Ñ is saturated w. r. t. standard superposition,

where Ñ is the set of simple ground instances of clauses in N

that are reduced w. r. t. E .

267

A Refinement

In practice, a base signature often contains domain elements,

that is, constant symbols that are

• guaranteed to be different from each other in every base

model, and

• minimal w. r. t. ≻ in their equivalent class.

Typical example for domain elements:

number constants 0, 1,−1, 2,−2, . . .

268

A Refinement

If the base signature contains domain elements, then weak

abstraction can be redefined as follows:

A clause C is called weakly abstracted, if every base term that

occurs in C as a subterm of a non-base term (or non-base

non-equational literal) is a variable or a domain element.

Why does that work?

269

3.9 Integrating Theories I: E-Unification

Dealing with mathematical theories naively in a superposition

prover is difficult:

Some axioms (e. g., commutativity) cannot be oriented

w. r. t. a reduction ordering.

⇒ Provers compute many equivalent copies of a formula.

Some axiom sets (e. g., torsion-freeness, divisibility) are

infinite.

⇒ Can we tell which axioms are really needed?

270

Integrating Theories I: E-Unification

Hierarchic (“black-box”) superposition is easy to implement,

but conditions like compactness and sufficient completeness are

rather restrictive.

Can we integrate theories directly into theorem proving calculi

(“white-box” integration)?

271

Integrating Theories I: E-Unification

Idea:

In order to avoid enumerating entire congruence classes

w. r. t. an equational theory E , treat formulas as representatives

of their congruence classes.

Compute an inference between formula C and D if an

inference between some clause represented by C and some

clause represented by D would be possible.

Consequence: We have to check whether there are substitu-

tions that make terms s and t equal w. r. t. E .

⇒ Unification is replaced by E -unification.

272

E-Unification

E -unification (unification modulo an equational theory E):

For a set of equality problems {s1 ≈ t1, . . . , sn ≈ tn}, an

E -unifier is a substitution σ such that for all i ∈ {1, . . . , n}:

siσ ≈E tiσ.

Recall: siσ ≈E tiσ means E |= siσ ≈ tiσ.

In general, there are infinitely many (E -)unifiers.

What about most general unifiers?

273

E-Unification

Frequent cases: E = ∅, E = AC, E = ACU:

x + (y + z) ≈ (x + y) + z (associativity = A)

x + y ≈ y + x (commutativity = C)

x + 0 ≈ x (identity (unit) = U)

The identity axiom is also abbreviated by “1”, in particular,

if the binary operation is denoted by ∗. (ACU = AC1).

274

E-Unification

Example:

x + y and c are ACU-unifiable with

{x 7→ c , y 7→ 0} and {x 7→ 0, y 7→ c}.

x + y and x ′ + y ′ are ACU-unifiable with

{x 7→ z1 + z2, y 7→ z3 + z4, x
′ 7→ z1 + z3, y

′ 7→ z2 + z4}

(among others).

275

E-Unification

More general substitutions:

Let X be a set of variables.

A substitution σ is more general modulo E than a substitution

σ′ on X , if there exists a substitution ρ such that xσρ ≈E xσ′

for all x ∈ X .

Notation: σ .X
E σ′.

(Why X? Because we cannot restrict to idempotent

substitutions.)

276

E-Unification

Complete sets of unifiers:

Let S be an E -unification problem, let X = Var(S).

A set C of E -unifiers of S is called complete (CSU),

if for every E -unifier σ′ of S there exists a σ ∈ C

with σ .X
E σ′.

A complete set of E -unifiers C is called minimal (µCSU),

if for all σ,σ′ ∈ C , σ .X
E σ′ implies σ = σ′.

Note: every E -unification problem has a CSU. (Why?)

277

E-Unification

The set of equations E is of unification type

unitary, if every E -unification problem has a µCSU with

cardinality ≤ 1 (e. g.: E = ∅);

finitary, if every E -unification problem has a finite µCSU

(e. g.: E = ACU, E = AC, E = C);

infinitary, if every E -unification problem has a µCSU and some

E -unification problem has an infinite µCSU (e. g.: E = A);

zero (or nullary), if some E -unification problem does not have

a µCSU (e. g.: E = A ∪ {x + x ≈ x}).

278

Unification modulo ACU

Let us first consider elementary ACU-unification:

the terms to be unified contain only variables and the

function symbols from Σ = ({+/2, 0/0}, ∅).

Since parentheses and the order of summands don’t matter,

every term over Xn = {x1, . . . , xn} can be written as a sum
∑n

i=1 ai xi .

279

Unification modulo ACU

The ACU-equivalence class of a term t =
∑n

i=1 ai xi ∈ TΣ(Xn)

is uniquely determined by the vector ~vn(t) = (a1, . . . , an).

Analogously, a substitution σ = { xi →
∑m

j=1 bi j xj | 1 ≤ i ≤ n }

is uniquely determined by the matrix

Mn,m(σ) =








b11 · · · b1m
...

...

bn1 · · · bnm








280

Unification modulo ACU

Let t =
∑n

i=1 ai xi

and σ = { xi →
∑m

j=1 bi j xj | 1 ≤ i ≤ n }.

Then tσ =
∑n

i=1 ai (
∑m

j=1 bi j xj)

=
∑n

i=1

∑m
j=1 ai bi j xj

=
∑m

j=1

∑n
i=1 ai bi j xj

=
∑m

j=1(
∑n

i=1 ai bi j) xj .

Consequence:

~vm(tσ) = ~vn(t) ·Mn,m(σ).

281

Unification modulo ACU

Let S = {s1 ≈ t1, . . . , sk ≈ tk} be a set of equality problems

over TΣ(Xn).

Then the following properties are equivalent:

(a) σ is an ACU-unifier of S from Xn → TΣ(Xm).

(b) ~vm(siσ) = ~vm(tiσ) for all i ∈ {1, . . . , k}.

(c) ~vn(si) ·Mn,m(σ) = ~vn(ti) ·Mn,m(σ) for all i ∈ {1, . . . , k}.

(d) (~vn(si)− ~vn(ti)) ·Mn,m(σ) = ~0m for all i ∈ {1, . . . , k}.

(e) Mk,n(S) ·Mn,m(σ) = ~0k,m.

where Mk,n(S) is the k × n matrix whose rows are the

vectors ~vn(si)− ~vn(ti).

282

Unification modulo ACU

Then the following properties are equivalent (cont’d):

(e) Mk,n(S) ·Mn,m(σ) = ~0k,m.

where Mk,n(S) is the k × n matrix whose rows are the

vectors ~vn(si)− ~vn(ti).

(f) The columns of Mn,m(σ) are non-negative integer solutions

of the system of homogeneous linear diophantine equations

DE (S):

Mk,n(S) ·






y1
...

yn




 =






0
...

0






283

Unification modulo ACU

Computing unifiers:

Obviously: if ~y1, . . . ,~yr are solutions of DE (S) and a1, . . . , ar

are natural numbers, then a1~y1 + · · ·+ ar~yr is also a solution.

(In particular, the zero vector is a solution!)

In fact, one can compute a finite set of solutions ~y1, . . . ,~yr ,

such that every solution of DE (S) can be represented as such

a linear combination.

Moreover, if we combine these column vectors ~y1, . . . ,~yr to

an n × r matrix, this matrix represents a most general unifier

of S . (Proof: see Baader/Nipkow.)

284

From ACU to AC

A complete set of AC-unifiers for elementary AC-unification

problems can be computed from a most general ACU-unifier by

some postprocessing.

Elementary AC-unification is finitary and the elementary

unifiability problem is solvable in polynomial time.

But that does not mean that minimal complete sets of

AC-unifiers can be computed efficiently.

285

From ACU to AC

E. Domenjoud has computed the exact size of AC-µCSUs for

unification problems of the following kind:

mx1 + · · ·+m xp ≈ n y1 + · · ·+ n yq

where gcd(m, n) = 1.

The number of unifiers is

(−1)p+q

p
∑

i=0

q
∑

j=0

(−1)i+j

(
p

i

)(
q

j

)

2
(m+j−1

m)(n+i−1
n)

286

From ACU to AC

For p = m = 1 and q = n = 4, that is, for the equation

4 x ≈ y1 + y2 + y3 + y4

this is

34 359 607 481.

287

From ACU to AC

Consequence:

If possible, avoid the enumeration of AC-µCSUs

(which may have doubly exponential size).

Rather: only check AC-unifiability.

Or: use ACU instead.

288

Unification with Constants

So far:

Elementary unification:

terms over variables and {+, 0} or {+}.

Step 2:

Additional free constants.

Step 3:

Additional arbitrary free function symbols.

❀ Unification in the union of disjoint equational theories.

289

Unification with Constants

Unification with constants:

We can treat constants ai like variables xi that must be

mapped to themselves.

Consequence: The algorithm is similar to the one we have

seen before, but we have to deal with homogeneous and

inhomogeneous linear diophantine equations.

290

Unification with Constants

Some complexity bounds change, however:

Unification type:

elementary ACU-unification: unitary;

ACU-unification with constants: finitary.

Checking unifiability:

elementary ACU-unification: trivial;

ACU-unification with constants: NP-complete.

291

Combining Unification Procedures

The Baader–Schulz combination procedure allows to combine

unification procedures for disjoint theories (e. g., ACU and the

free theory).

Basic idea (as usual): Use abstraction to convert the combined

unification problem into a union of two pure unification problems;

solve them individually; combine the results.

292

Combining Unification Procedures

Problem 1:

The individual unification procedures might map the

same variable to different terms, e. g., {x 7→ y + z} and

{x 7→ f (w)}.

Solution: Guess for each variable non-deterministically which

procedure treats it like a constant.

293

Combining Unification Procedures

Problem 2:

Combining the results might produce cycles,

e. g., {x 7→ y + z} and {y 7→ f (x)}.

Solution: Guess an ordering of the variables non-deterministically;

each individual unifier that is computed must respect the

ordering.

Note: This is a non-trivial extension that may be impossible

for some unification procedures

(but it is possible for regular equational theories, i. e., theories

where for each equation u ≈ v the terms u and v contain the

same variables).

294

3.10 Integrating Theories II: Calculi

We can replace syntactic unification by E -unification in the

superposition calculus.

Moreover, it is usually necessary to choose a term ordering in

such a way that all terms in an E -congruence class behave in

the same way in comparisons (E -compatible ordering).

However, this is usually not sufficient.

295

AC and ACU

Example: Let E = AC. The clauses

a+ b ≈ d

b + c ≈ e

c + d 6≈ a+ e

are contradictory w. r. t. AC, but if a ≻ b ≻ c ≻ d ≻ e, then the

maximal sides of these clauses are not AC-unifiable.

296

AC and ACU

We have to compute inferences if some part of a maximal sum

overlaps with a part of another maximal sum (the constant b in

the example above).

Technically, we can do this in such a way that we first replace

positive literals s ≈ t by s + x ≈ t + x , and then unify maximal

sides w. r. t. AC or ACU (Peterson and Stickel 1981, Wertz 1992,

Bachmair and Ganzinger 1994).

297

AC and ACU

However, it turns out that even if we integrate AC or ACU

in such a way into superposition, the resulting calculus is not

particularly efficient – not even for ground formulas.

This is not surprising: The uniform word problem for AC or ACU

is EXPSPACE-complete (Cardoza, Lipton, and Meyer 1976,

Mayr and Meyer 1982).

298

Abelian Groups

Working in Abelian groups is easier:

If we integrate also the inverse axiom, it is sufficient to

compute inferences if the maximal part of a maximal sum

overlaps with the maximal part of another maximal sum

(like in Gaussian elimination).

Intuitively, in Abelian groups we can always isolate the

maximal part of a sum on one side of an equation.

299

Abelian Groups

What does that mean for the non-ground case?

Example:

g(y) + x 6≈ 2z ∨ f (x) + z ≈ 2y

Shielded variables (x , y):

occur below a free function symbol,

❀ cannot be mapped to a maximal term,

❀ are not involved in inferences.

Unshielded variables (z):

can be instantiated with m · u + s, where u is maximal,

❀ must be considered in inferences,

❀ variable overlaps (similar to ACU).

300

Abelian Groups

Variable overlaps are ugly:

If we want to derive a contradiction from

2a ≈ c

2b ≈ d

2x 6≈ c + d

and a ≻ b ≻ c ≻ d , we have to map x to a sum of two

variables x ′ + x ′′, unify x ′ with a and x ′′ with b.

301

Divisible Torsion-free Abelian Groups

Working in divisible torsion-free Abelian groups is still easier:

DTAGs permit variable elimination.

Every clause can be converted into a DTAG-equivalent clause

without unshielded variables.

Since only overlaps of maximal parts of maximal sums have

to be computed, variable overlaps become unnecessary.

Moreover, if abstraction is performed eagerly, terms to be

unified do not contain +, so ACU-unification can be replaced

by standard unification.

302

Other Theories

A similar case: Chaining calculus for orderings.

D′ ∨ t′ < t C ′ ∨ s < s′

(D′ ∨ C ′ ∨ t′ < s′)σ

where σ is a most general unifier of t and s.

Avoids explicit inferences with transitivity.

Only maximal sides of ordering literals have to be overlapped.

But unshielded variables can be maximal.

In dense linear orderings without endpoints, all unshielded

variables can be eliminated.

303

Other Theories

DTAG-superposition and chaining can be combined to get a

calculus for ordered divisible Abelian groups.

Again, all unshielded variables can be eliminated.

304

Conclusion

Integrating theory axioms into superposition can become easier

by integrating more axioms:

Easier unification problem (AC → ACU).

More restrictive inference rules (ACU → AG).

Fewer (or no) variable overlaps (AG → DTAG).

305

Conclusion

Main drawback of all theory integration methods:

For each theory, we have to start from scratch, both for the

completeness proof and the implementation.

306

Part 4: Higher-Order Logic

Higher-Order logic

• extends first-order logic with quantification over functions

and predicates

• is very expressive (natural numbers, uncountable sets...)

• is the preferred language of most mathematicians

Higher-order logic is also called simple type theory.

307

4.1 History

Higher-order quantification

Unrestricted quantification is first considered by Frege (1879).

It contains several paradoxical statements, such as Russell’s

paradox, which motivated the creation of ramified type theory

by Russell (1908).

A later simplification of this theory by Church (1940) was

denoted a simple type theory, or HOL.

308

4.2 Syntax

Syntax choices:

explicit function symbols

explicit predicate abstraction

quantifiers and connectives as constants of the language

with extensionality

309

Types

Types are defined recursively:

o is the type of Booleans, of order 0.

ι is the type of individuals, of order 1.

if τ1 and τ2 are types then τ1 � τ2 is a type, of order

max(order(τ1) + 1, order(τ2))

We also use the notation τ1, . . . , τn � τ to denote τ1 � (· · · �

(τn � τ) . . .).

310

Terms

Given a non-empty set of constants and a collection of non-empty

sets of variables for each type,

constants are terms

variables are terms

if t1 and t2 are terms then (t1t2) is a term

if x is a variable and t is a term then λx . t is a term

311

Types of Terms

Given a non-empty set S of individuals and a collection of

non-empty sets of variables for each type, the term t is of type

o if t ∈ {⊤,⊥}

ι if t ∈ S

τ if t = x(τ) is a variable of type τ

τ1 � τ2 if t = λx(τ1). t1(τ2)

τ2 if t = (t1(τ1�τ2) t2(τ1))

A term is well-typed if a type can be associated to it according

to the previous definition. We only consider well-typed terms in

what follows.

312

4.3 Semantics

A well-founded formula is a term of type o.

How to evaluate the truth of such a formula?

313

Classical Model

Let D be a non-empty set, for each type τ we define the

following collection, denoted as the frame of the type

the frame of τ = o is Jo,DK = {⊤,⊥}

the frame of τ = ι is Jι,DK = D

the frame of τ = τ1 � τ2 is Jτ1 � τ2,DK, the collection of all

functions mapping Jτ1,DK into Jτ2,DK

314

Classical Model

A higher-order classical model is a structureM = 〈D, I〉 where

D is a non-empty set called the domain of the model and I is

the interpretation of the model, a mapping such that

if a(τ) is a constant then I(a) ∈ Jτ ,DK,

I(=(τ�τ�o)) is the equality relation on Jτ ,DK.

By adding a valuation function α such that for any variable x(τ),

α(x) ∈ Jτ ,DK, it becomes possible to evaluate the truth-value

of higher-order formulas as in first-order logic.

315

Classical Model

The evaluation VM,α(t) of a term t given a modelM = 〈D, I〉

and a valuation α is recursively defined as

I(a) if t is a constant a

α(x) if t is a variable x

the function from Jτ1,DK to Jτ2,DK such that for all a ∈

Jτ1,DK, (VM,α(λx . t))(a) = VM,α(t[a/x]) if t = λx(τ1). t(τ2)

(VM,α(t1))(VM,α(t2)) if t = (t1(τ1�τ2) t2(τ1))

316

Classical Model

Truth evaluation:

Given a modelM = 〈D, I〉 and a valuation α, a well-founded

formula φ is true in M with respect to α, denoted as

M,α |= φ iff VM,α(φ) = {⊤}

φ is satisfiable in M iff there exist a valuation α such that

M,α |= φ

φ is valid in M, denoted M |= φ iff for all valuations α,

M,α |= φ

φ is valid, denoted |= φ iff for all modelsM,M |= φ

These notions extend straightforwardly to sets of formulas.

317

Problems with the classical semantic

• Loss of compactness: in FOL, every unsatisfiable set of

formulas has a finite unsatisfiable subset. This is no longer

the case in HOL with classical semantics (cHOL).

• Loss of strong completeness: no proof procedure able to

derive all consequences of a set of formulas can exist in

cHOL.

• Loss of weak completeness: no proof procedure able to

derive all valid sets of formulas can exist in cHOL.

• And even worse: the status of validity of some formulas is

unclear.

318

Henkin Semantics

To solve the previously mentioned issues, it is possible to

generalize the notion of a model by relaxing the notion of a

frame into that of a Henkin frame. Given a non-empty set D,

Jo,DK = {⊤,⊥}

Jι,DK = D

Jτ1 � τ2,DK is the collection of all some functions mapping

Jτ1,DK into Jτ2,DK with some additional closure conditions.

319

Henkin vs Classical Semantics

• Any formula true in all Henkin models is true in all classical

models.

• There are formulas true in all classical models that are not

true in all Henkin models.

• There are (weak) complete proof procedures for HOL with

Henkin semantics.

320

4.4 Higher-Order Term Unification

In FOL, there exist a unique m.g.u. for two terms.

This is no longer true in HOL.

For example, consider t1 = f x and t2 = a where f , x are

variables and a is a constant. The unifiers of t1 and t2 are

{f 7→ λy . a} and {f 7→ λy . y , x 7→ a}.

Some equations even have an infinite number of m.g.u’s.

Even worse, the higher-order unification problem is undecidable.

321

Huet’s Unification Algorithm

Given:

E , a unification problem, i.e. a finite set of equations.

Goal:

find a substitution σ such that Eσ contains only syntactically

equal equations.

Idea:

Test if the head symbols of the two sides of equations can be

unified or not to restrict the search space.

322

Rigid and Flexible Terms

A term is rigid if its head symbol is a constant or a bound

variable. Otherwise its head symbol is a free variable and the

term is flexible.

323

Rigid-Rigid Equations

Two rules can be applied depending on the head symbols in the

rigid-rigid equation.

Fail:

E ∪ {λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. g v1 . . . vq}

⊥

Simplify:

E ∪ {λx1 . . . xn. f u1 . . . up ≈ λx1 . . . xn. f v1 . . . vp}

E ∪ {λx1 . . . xn. u1 ≈ λx1 . . . xn. v1, . . . ,λx1 . . . xn. up ≈ λx1 . . . xn. vp}

324

Flexible-Rigid Equations

There is only one rule to handle such terms, but it can generate

many results.

Generate:

E

Eσ

where σ = {X 7→ λy1, . . . , yp. h (H1 y1 . . . yp) . . . (Hr y1 . . . yp)}

and (λx1 . . . xn.X u1 . . . up ≈ λx1 . . . xn. f v1 . . . vq) ∈ E such

that h ∈ {f , y1, . . . , yp} if f is a constant and h ∈ {y1, . . . , yp}

otherwise.

325

Flexible-Flexible Equations

The following result, also by Huet, handles flexible-flexible

equations.

Proposition 4.1:

A unification problem E containing only flexible-flexible

equations has always a solution.

We say that a unification problem with only flexible-flexible

equations is a solved unification problem.

326

The Whole Procedure

A reasonable strategy consists in applying Fail and Simplify

eagerly, and Generate only when there is no rigid-rigid equation

left.

Generate is non-deterministic, making this procedure branching.

Theorem 4.2:

The procedure made of the rules Fail, Simplify and Generate is

sound and complete.

327

Soundness

Proposition 4.3:

If a unification problem E can be transformed into a solved

problem E ′ by applying Fail, Simplify and Generate then E has

a solution.

328

Completeness

Proposition 4.4:

If a unification problem E has a solution σ then we can derive

a solved problem E ′ from E using the rules Fail, Simplify and

Generate.

329

Termination?

Higher-order unification is only semi-decidable.

When solutions exist, Huet’s algorithm will find one and

terminate, but when there is no solution, it may loop forever.

330

4.5 Resolution in Higher-Order Logic

In first-order logic, resolution for general clauses has two rules:

Resolution:
D ∨ B C ∨ ¬A

(D ∨ C)σ

where σ = mgu(A,B).

Factoring:
C ∨ A ∨ B

(C ∨ A)σ

where σ = mgu(A,B).

331

Resolution in Higher-Order Logic

In higher-order logic, a first problem is that m.g.u’s need not

exist and unification is undecidable.

Example 4.5:

Given D ∨ B and C ∨ ¬A where A and B are unifiable but

without m.g.u., there may exist infinitely many σ1, σ2,...

unifiers of A and B generating distinc resolvents (D ∨ C)σ1,

(D ∨ C)σ2,... and in general there is no way to know which one

is needed to prove the given theorem.

332

Resolution in Higher-Order Logic

Huet proposes to delay the computation of unifiers (when no

m.g.u. exists) by using constraints storing the corresponding

unification problems.

Once a contradiction has been derived, the corresponding

unification problem can then be solved using Huet’s algorithm.

Resolution:
D ∨ BJX K C ∨ ¬AJY K

D ∨ C JX ∧ Y ∧ A ≈ BK

Factoring:
C ∨ A ∨ BJX K

C ∨ AJX ∧ A ≈ BK

333

Resolution in Higher-Order Logic

Another problem in HOL is that it is not always possible to

guess the necessary substitution based on the available terms.

Example 4.6:

Consider the formula ¬X(o) where X is a Boolean variable.

The set {¬X} is saturated by resolution, but still the formula

¬X is unsatisfiable. However, we can guess the substitution

σ = {X 7→ ¬Y }. Then (¬X)σ = ¬(¬Y) = Y and resolution

can now derive the empty clause from ¬X and Y .

334

Resolution in Higher-Order Logic

To overcome this issue, Huet introduces additional splitting

rules.

C ∨ AJX K

C ∨ ¬x(o)JX ∧ A ≈ ¬xK

C ∨ AJX K

C ∨ x(o) ∨ y(o)JX ∧ A ≈ (x ∨ y)K

C ∨ AJX K

C ∨ P(τ�o)x(τ)JX ∧ A ≈ Π((τ�o)�o)PK

Π((τ�o)�o) is the function that associates ⊤ to any set of type

τ � o that contains all elements of type τ .

335

Resolution in Higher-Order Logic

C ∨ ¬AJX K

C ∨ x(o)JX ∧ A ≈ ¬xK

C ∨ ¬AJX K

C ∨ x(o)JX ∧ A ≈ (x ∨ y(o))K and C ∨ yJX ∧ A ≈ (x ∨ y)K

C ∨ ¬AJX K

C ∨ ¬P(τ�o)(sk((τ�o)�τ)P)JX ∧ A ≈ Π((τ�o)�o)PK

sk is the skolem constant such that ¬Π((τ�o)�o)P =

¬P(τ�o)(sk((τ�o)�τ)P).

336

Resolution in Higher-Order Logic

Huet proved that resolution with these splitting rules is sound

and complete (but not terminating).

337

Resolution in Higher-Order Logic

In practice, several improvements are possible.

As soon as a constraint becomes unsatisfiable, delete the

corresponding clause.

If a constraint has a small enough set of solutions, generate

all applied clauses to replace the constrained original one.

338

4.6 Superposition in Higher-Order Logic

In HOL, existing automated solvers rely on:

• Tableau (Satallax)

• Resolution (Leo III)

• Applicative encoding to first-order logic (Sledgehammer)

• ...

Currently there exists no efficient version of Superposition for

full higher-order logic.

There are many theoretical problems to lifting Superposition to

HOL (unification,...)

339

Superposition in λ-free Higher-Order Logic

Things get easier in λ-free higher-order logic (i.e. no λ-terms

and no predicate variables).

This fragment can be encoded in FOL using a binary function

app (application).

If the ordering has all standard properties of reduction orderings

plus compatibility with arguments, the extension of Superposition

to this fragment is straightforward.

340

Superposition in λ-free Higher-Order Logic

There is only one known ordering with these properties: KBO.

There are applications where standard KBO is not optimal.

There are other orderings that one would like to use (LPO,

KBO with multipliers) but one loses at least one of the desired

properties (e.g. compatibility with arguments).

341

Superposition in λ-free Higher-Order Logic

There are workarounds that allow to recover from the loss of

compatibility with arguments, e.g. by:

redefining redundancy so that g x ≈ f x is not redundant to

g ≈ f , and

adding a rule that adds context to an equation (generate

g x ≈ f x from g ≈ f), and

relaxing the variable constraint in the superposition rules (no

superposition at or under a variable, except if...), and

adding a layer to the completeness proof.

342

Superposition in λ-free Higher-Order Logic

Our current goal is to extend this calculus to predicate-free HOL

(including λ-terms) and then to full HOL.

343

