
So far, we have considered only inference rules that add new clauses to the current set
of clauses (corresponding to the Deduce rule of Knuth-Bendix Completion).

In other words, we have derivations of the form N0 ⊢ N1 ⊢ N2 ⊢ . . . , where each Ni+1 is
obtained from Ni by adding the consequence of some inference from clauses in Ni.

Under which circumstances are we allowed to delete (or simplify) a clause during the
derivation?

A run of the superposition calculus is a sequence N0 ⊢ N1 ⊢ N2 ⊢ . . . , such that
(i) Ni |= Ni+1, and
(ii) all clauses in Ni \Ni+1 are redundant w. r. t. Ni+1.

In other words, during a run we may add a new clause if it follows from the old ones,
and we may delete a clause, if it is redundant w. r. t. the remaining ones.

For a run, N∞ =
⋃

i≥0
Ni and N∗ =

⋃

i≥0

⋂

j≥iNj. The set N∗ of all persistent clauses is
called the limit of the run.

Lemma 3.12 If N ⊆ N ′, then Red(N) ⊆ Red(N ′).

Proof. Obvious. ✷

Lemma 3.13 If N ′ ⊆ Red(N), then Red(N) ⊆ Red(N \N ′).

Proof. Follows from the compactness of first-order logic and the well-foundedness of
the multiset extension of the clause ordering. ✷

Lemma 3.14 Let N0 ⊢ N1 ⊢ N2 ⊢ . . . be a run. Then Red(Ni) ⊆ Red(N∞) and

Red(Ni) ⊆ Red(N∗) for every i.

Proof. Exercise. ✷

Corollary 3.15 Ni ⊆ N∗ ∪Red(N∗) for every i.

Proof. If C ∈ Ni \ N∗, then there is a k ≥ i such that C ∈ Nk \ Nk+1, so C must be
redundant w. r. t. Nk+1. Consequently, C is redundant w. r. t. N∗. ✷

57



A run is called fair, if the conclusion of every inference from clauses in N∗ \ Red(N∗) is
contained in some Ni ∪ Red(Ni).

Lemma 3.16 If a run is fair, then its limit is saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-redundant
clauses in N∗ is contained in some Ni ∪ Red(Ni), and therefore contained in N∗ ∪
Red(N∗). Hence N∗ is saturated up to redundancy. ✷

Theorem 3.17 (Refutational Completeness: Dynamic View) LetN0 ⊢ N1 ⊢ N2 ⊢
. . . be a fair run, let N∗ be its limit. Then N0 has a model if and only if ⊥ /∈ N∗.

Proof. (⇐): By fairness, N∗ is saturated up to redundancy. If ⊥ /∈ N∗, then it has
a term-generated model. Since every clause in N0 is contained in N∗ or redundant
w. r. t. N∗, this model is also a model of GΣ(N0) and therefore a model of N0.

(⇒): Obvious, since N0 |= N∗. ✷

58



3.5 Improvements and Refinements

The superposition calculus as described so far can be improved and refined in several
ways.

Concrete Redundancy and Simplification Criteria

Redundancy is undecidable.

Even decidable approximations are often expensive (experimental evaluations are needed
to see what pays off in practice).

Often a clause can be made redundant by adding another clause that is entailed by the
existing ones.

This process is called simplification.

Examples:

Subsumption:
If N contains clauses D and C = C ′ ∨Dσ, where C ′ is non-empty, then D subsumes
C and C is redundant.
Example: f(x) ≈ g(x) subsumes f(y) ≈ a ∨ f(h(y)) ≈ g(h(y)).

Trivial literal elimination:
Duplicated literals and trivially false literals can be deleted: A clause C ′ ∨ L ∨ L can
be simplified to C ′ ∨ L; a clause C ′ ∨ s 6≈ s can be simplified to C ′.

Condensation:
If we obtain a clause D from C by applying a substitution, followed by deletion of
duplicated literals, and if D subsumes C, then C can be simplified to D.
Example: By applying {y → g(x)} to C = f(g(x)) ≈ a ∨ f(y) ≈ a and deleting the
duplicated literal, we obtain f(g(x)) ≈ a, which subsumes C.

Semantic tautology deletion:
Every clause that is a tautology is redundant. Note that in the non-equational case,
a clause is a tautology if and only if it contains two complementary literals, whereas
in the equational case we need a congruence closure algorithm to detect that a clause
like x 6≈ y ∨ f(x) ≈ f(y) is tautological.

Rewriting:
If N contains a unit clause D = s ≈ t and a clause C[sσ], such that sσ ≻ tσ and
C ≻C Dσ, then C can be simplified to C[tσ].
Example: If D = f(x, x) ≈ g(x) and C = h(f(g(y), g(y))) ≈ h(y), and ≻ is an LPO
with h > f > g, then C can be simplified to h(g(g(y))) ≈ h(y).

59



Selection Functions

Like the ordered resolution calculus, superposition can be used with a selection function
that overrides the ordering restrictions for negative literals.

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

We indicate selected literals by a box:

¬f(x) ≈ a ∨ g(x, y) ≈ g(x, z)

The second ordering condition for inferences is replaced by

– The last literal in each premise is either selected, or there is no selected literal in
the premise and the literal is maximal in the premise (strictly maximal for positive
literals in superposition inferences).

In particular, clauses with selected literals can only be used in equality resolution infer-
ences and as the second premise in negative superposition inferences.

Refutational completeness is proved essentially as before:

We assume that each ground clause in GΣ(N) inherits the selection of one of the
clauses in N of which it is a ground instance (there may be several ones!).

In the proof of the model construction theorem, we replace case 3 by “Cθ contains a
selected or maximal negative literal” and case 4 by “Cθ contains neither a selected
nor a maximal negative literal”.

In addition, for the induction proof of this theorem we need one more property, namely:
(iv) If Cθ has selected literals then ECθ = ∅.

Redundant Inferences

So far, we have defined saturation in terms of redundant clauses:

N is saturated up to redundancy, if the conclusion of every inference from clauses in
N \Red(N) is contained in N ∪ Red(N).

This definition ensures that in the proof of the model construction theorem, the conclu-
sion C0θ of a ground inference follows from clauses in GΣ(N) that are smaller than or
equal to itself, hence they are smaller than the premise Cθ of the inference, hence they
are true in RCθ by induction.

60



However, a closer inspection of the proof shows that it is actually sufficient that the
clauses from which C0θ follows are smaller than Cθ – it is not necessary that they are
smaller than C0θ itself. This motivates the following definition of redundant inferences:

A ground inference with conclusion C0 and right (or only) premise C is called redundant

w. r. t. a set of ground clauses N , if one of its premises is redundant w. r. t. N , or if C0

follows from clauses in N that are smaller than C.

An inference is redundant w. r. t. a set of clauses N , if all its ground instances are
redundant w. r. t. GΣ(N).

Recall that a clause can be redundant w. r. t. N without being contained in N . Analo-
gously, an inference can be redundant w. r. t. N without being an inference from clauses
in N .

The set of all inferences that are redundant w. r. t. N is denoted by RedInf (N).

Saturation is then redefined in the following way:

N is saturated up to redundancy, if every inference from clauses in N is redundant
w. r. t. N .

Using this definition, the model construction theorem can be proved essentially as be-
fore.

The connection between redundant inferences and clauses is given by the following lem-
mas. They are proved in the same way as the corresponding lemmas for redundant
clauses:

Lemma 3.18 If N ⊆ N ′, then RedInf (N) ⊆ RedInf (N ′).

Lemma 3.19 If N ′ ⊆ Red(N), then RedInf (N) ⊆ RedInf (N \N ′).

Literature

Leo Bachmair, Harald Ganzinger: Completion of First-Order Clauses with Equality by
Strict Superposition (Extended Abstract). Conditional and Typed Rewriting Systems,
2nd International Workshop, LNCS 516, pp. 162–180, Springer, 1990.

Leo Bachmair, Harald Ganzinger: Rewrite-based Equational Theorem Proving with Se-
lection and Simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

Leo Bachmair, Harald Ganzinger: Resolution Theorem Proving. Handbook of Auto-
mated Reasoning, Vol. 1, Ch. 2, pp. 19–99, Elsevier Science B.V., 2001.

Christoph Weidenbach: Combining Superposition, Sorts and Splitting. Handbook of Au-
tomated Reasoning, Vol. 2, Ch. 27, pp. 1965–2013, Elsevier Science B.V., 2001.

61



3.6 Splitting

Motivation:

A clause like f(x) ≈ a ∨ g(y) ≈ b has rather undesirable properties in the superposi-
tion calculus: It does not have negative literals that one could select; it does not have
a unique maximal literal; moreover, after performing a superposition inference with
this clause, the conclusion often does not have a unique maximal literal either.

On the other hand, the two unit clauses f(x) ≈ a and g(y) ≈ b have much nicer
properties.

Splitting with Backtracking

If a clause ∀~x, ~y C1(~x) ∨ C2(~y) consists of two non-empty variable-disjoint subclauses,
then it is equivalent to the disjunction

(

∀~x C1(~x)
)

∨
(

∀~y C2(~y)
)

.

In this case, superposition derivations can branch in a tableau-like manner:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2}

where C1 and C2 do not have common variables.

If ⊥ is found on the left branch, backtrack to the right one.

If C1 is ground, the general rule can be improved:

Splitting:
N ∪ {C1 ∨ C2}

N ∪ {C1} | N ∪ {C2} ∪ {¬C1}

where C1 is ground.

Note: ¬C1 denotes the conjunction of all negations of literals in C1.

In practice: most useful if both subclauses contain at least one positive literal.

Implementing Splitting

Most clauses that are derived after a splitting step do not depend on the split clause.

It is unpractical to delete them as soon as one branch is closed and to recompute them
in the other branch afterwards.

Solution: Associate a label set L to every clause C that indicates on which splits it
depends.

Inferences:
C2 ← L2 C1 ← L1

C0 ← L2 ∪ L1

62



If we derive ⊥ ← L in one branch:

Determine the last split in L.

Backtrack to the corresponding right branch.

Keep those clauses that are still valid on the right branch.

Restore clauses that have been simplified if the simplifying clause is no longer valid
on the right branch.

Additionally: Delete splittings that did not contribute to the contradiction (branch
condensation).

AVATAR

Superposition with splitting has some similarity with CDCL.

Can we actually use CDCL?

Encoding splitting components:

Use propositional literals as labels for splitting components:

non-ground component C → propositional variable PC

positive ground component C → propositional variable PC

negative ground component C → negated propositional variable ¬PC

Therefore: splittable clauses → propositional clauses.

Implementation:

Combine a CDCL solver and a superposition prover.

The superposition prover passes splittable clauses and labelled empty clauses to the
CDCL solver.

If the CDCL solver finds contradiction: input contradictory.

Otherwise the CDCL solver extracts a boolean model and passes the associated la-
belled clauses to the superposition prover.

Literature

Andrei Voronkov: AVATAR: The Architecture for First-Order Theorem Provers. Int.
Conf. on Computer-Aided Verification, CAV, LNCS 8559, pp. 696–710, Springer, 2014.

Christoph Weidenbach: Combining Superposition, Sorts and Splitting. Handbook of Au-
tomated Reasoning, Vol. 2, Ch. 27, pp. 1965–2013, Elsevier Science B.V., 2001.

63



3.7 Constraint Superposition

So far:

Refutational completeness proof for superposition is based on the analysis of inferences
between ground instances of clauses.

Inferences between ground instances must be covered by inferences between original
clauses.

Non-ground clauses represent the set of all their ground instances.

Do we really need all ground instances?

Constrained Clauses

A constrained clause is a pair (C,K), usually written as C [[K]], where C is a Σ-clause
and K is a formula (called constraint).

Often: K is a boolean combination of ordering literals s ≻ t with Σ-terms s, t.
(also possible: comparisons between literals or clauses).

Intuition: C [[K]] represents the set of all ground clauses Cθ for which Kθ evaluates to
true for some fixed term ordering. Such a Cθ is called a ground instance of C [[K]].

A clause C without constraint is identified with C [[⊤]].

A constrained clause C [[⊥]] with an unsatisfiable constraint represents no ground
instances; it can be discarded.

Constraint Superposition

Inference rules for constrained clauses:

Pos. Superposition:
D′ ∨ t ≈ t′ [[K2]] C ′ ∨ s[u] ≈ s′ [[K1]]

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ [[(K2 ∧K1 ∧K)σ]]

where σ = mgu(t, u) and
u is not a variable and
K = (t ≻ t′ ∧ s[u] ≻ s′

∧ (t ≈ t′) ≻C D′

∧ (s[u] ≈ s′) ≻C C ′

∧ (s[u] ≈ s′) ≻L (t ≈ t′))

The other inference rules are modified analogously.

64


