
The Solver Interface

The general CDCL(T) procedure has to be connected to a “Solver” for T , a theory
module that performs at least T -satisfiability checks.

The solver is initialized with a list of all literals occurring in the input of the CDCL(T)
procedure.

Internally, it keeps a stack I of theory literals that is initially empty. The solver performs
the following operations on I:

SetTrue(L: T -Literal):

Check whether I ∪ {L} is T -satisfiable.

If no: return an explanation for L, that is, a subset J of I such that J |=T L.

If yes: push L on I.

Optionally: Return a list of literals that are T -consequences of I ∪ {L} (and have not
yet been detected before).

Note: Depending on T , detecting (all) T -consequences may be very cheap or very
expensive.

Backtrack(n: N):

Pop n literals from I.

Explanation(L: T -Literal):

Return an explanation for L, that is, a subset J of I such that J |=T L.

We assume that L has been returned previously as a result of some SetTrue(L′) op-
eration. No literal of J may occur in I after L′.

Computing Backjump Clauses

Backjump clauses for a conflict can then be computed as in the propositional case:

Start with the conflicting clause.

Resolve with the clauses used for Unit Propagate or the explanations produced by the
solver until a backjump clause (or ⊥) is found.

37

2.2 Heuristic Instantiation

CDCL(T) is limited to ground (or existentially quantified) formulas. Even if we have
decidability for more than the ground fragment of a theory T , we cannot use this in
CDCL(T).

Most current SMT implementations offer a limited support for universally quantified
formulas by heuristic instantiation.

Goal:

Create potentially useful ground instances of universally quantified clauses and add
them to the given ground clauses.

Idea (Detlefs, Nelson, Saxe: Simplify):

Select subset of the terms (or atoms) in ∀~xC as “trigger” (automatically, but can be
overridden manually).

If there is a ground instance Cθ of ∀~xC such that tθ occurs (modulo congruence) in
the current set of ground clauses for every t ∈ trigger(C), add Cθ to the set of ground
clauses (incrementally).

Conditions for trigger terms (or atoms):

(1) Every quantified variable of the clause occurs in some trigger term (therefore more
than one trigger term may be necessary).

(2) A trigger term is not a variable itself.

(3) A trigger is not explicitly forbidden by the user.

(4) There is no larger instance of the term in the formula:
(If f(x) were selected as a trigger in ∀xP (f(x), f(g(x))), a ground term f(a)
would produce an instance P (f(a), f(g(a))), which would produce an instance
P (f(g(a)), f(g(g(a)))), and so on.)

(5) No proper subterm satisfies (1)–(4).

Also possible (but expensive, therefore only in restricted form): Theory matching

The ground atom P (a) is not an instance of the trigger atom P (x+ 1); it is however
equivalent (in linear algebra) to P ((a− 1) + 1), which is an instance and may therefore
produce a new ground clause.

Heuristic instantiation is obviously incomplete

e. g., it does not find the contradiction for f(x, a) ≈ x, f(b, y) ≈ y, a 6≈ b

but it is quite useful in practice:

modern implementations: CVC, Yices, Z3.

38

2.3 Local Theory Extensions

Under certain circumstances, instantiating universally quantified variables with “known”
ground terms is sufficient for completeness.

Scenario:

Σ0 = (Ω0,Π0): base signature;
T0: Σ0-theory.

Σ1 = (Ω0 ∪ Ω1,Π0): signature extension;
K: universally quantified Σ1-clauses;
G: ground clauses.

Assumption: clauses in G are Σ1-flat and Σ1-linear:

only constants as arguments of Ω1-symbols,

if a constant occurs in two terms below an Ω1-symbol, then the two terms are identical,

no term contains the same constant twice below an Ω1-symbol.

Example: Monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f/1}.
K = { ∀x, y (¬x ≤ y ∨ f(x) ≤ f(y)) }.

G = { f(3) ≥ 6, f(5) ≤ 9 }.

Observation: If we choose interpretations for f(3) and f(5) that satisfy the G and
monotonicity axiom, then it is always possible to define f for all remaining integers
such that the monotonicity axiom is satisfied.

Example: Strictly monotonic functions over Z.

T0: Linear integer arithmetic.

Ω1 = {f/1}.
K = { ∀x, y (¬x < y ∨ f(x) < f(y)) }.

G = { f(3) > 6, f(5) < 9 }.

Observation: Even though we can choose interpretations for f(3) and f(5) that satisfy
G and the strict monotonicity axiom (map f(3) to 7 and f(5) to 8), we cannot define
f(4) such that the strict monotonicity axiom is satisfied.

To formalize the idea, we need partial algebras:

like (usual) total algebras, but fA may be a partial function.

39

There are several ways to define equality in partial algebras (strong equality, Evans
equality, weak equality, etc.). Here we use weak equality:

an equation s ≈ t holds w. r. t. A and β if both A(β)(s) and A(β)(t) are defined and
equal or if at least one of them is undefined;

a negated equation s 6≈ t holds w. r. t. A and β if both A(β)(s) and A(β)(t) are defined
and different or if at least one of them is undefined.

If a partial algebra A satisfies a set of formulas N w. r. t. weak equality, it is called a
weak partial model of N .

A partial algebra A embeds weakly into a partial algebra B if there is an injective total
mapping h : UA → UB such that if fA(a1, . . . , an) is defined inA then fB(h(a1), . . . , h(an))
is defined in B and equal to h(fA(a1, . . . , an)).

A theory extension T0 ⊆ T0 ∪K is called local, if for every set G, T0 ∪K ∪G is satisfiable
if and only if T0 ∪K[G] ∪G has a (partial) model, where K[G] is the set of instances of
clauses in K in which all terms starting with an Ω1-symbol are ground terms occurring
in K or G.

If every weak partial model of T0 ∪K can be embedded into a a total model, then the
theory extension T0 ⊆ T0 ∪K is local (Sofronie-Stokkermans 2005).

Note: There are many variants of partial models and embeddings corresponding to dif-
ferent kinds of locality.

Examples of local theory extensions:

free functions, constructors/selectors, monotonic functions, Lipschitz functions.

40

2.4 Goal-driven Instantiation

Instantiation is used to refute the current model discovered by the ground solver.

Rather than a fast but loosely guided instantiation technique, we can search for the most
suitable instance if it exists.

Scenario:

M : a model of the ground formula returned by the ground SMT solver.

Q: the set of universally quantified clauses contained in the original input.

Problem:

Find a clause ∀xC ∈ Q and a grounding substitution σ such that M ∪ Cσ is unsat-
isfiable, if it exists.

E-ground (Dis)unification Problem

Given

E: a set of ground equality literals,
N : a set of equality literals,

find σ such that E |= Nσ.

The E-ground (dis)unification problem can be used to encode the goal-driven instantia-
tion problem:

For M and each ∀xC ∈ Q, try to solve the E-ground (dis)unification problem M |=
(¬C)σ.

Congruence Closure with Free Variables

CCFV (Barbosa et al, 2017) decomposes N into sets of smaller constraints by replacing
terms with equivalent smaller ones until either

1. a variable assignment is possible, and the decomposition restarts afterwards,

2. a contradiction occurs, and the corresponding search branch is closed,

3. a substitution satisfying the problem is found.

CCFV is sound, complete and terminating for the E-ground (dis)unification problem.

Modern implementations: CVC4, VeriT.

41

Literature

Haniel Barbosa, Pascal Fontaine, Andrew Reynolds: Congruence Closure with Free Vari-
ables. Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2017,
LNCS 10206, pp. 214-230, Springer, 2017.

David Detlefs, Greg Nelson, James B. Saxe: Simplify: A Theorem Prover for Program
Checking. Journal of the ACM, 52(3):365–473, 2005.

Yeting Ge, Leonardo de Moura: Complete instantiation for quantified formulas in Sat-
isfiabiliby Modulo Theories. International Conference on Computer Aided Verification,
CAV 2009 LNCS 5643, pp. 306–320, Springer, 2009.

Leonardo de Moura, Nikolaj Bjørner: Efficient E-Matching for SMT solvers. Automated
Deduction, CADE-21, LNAI 4603, pp. 183–198, Springer, 2007.

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solving SAT and SAT Modulo
Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

Viorica Sofronie-Stokkermans: Hierarchic reasoning in local theory extensions. Auto-
mated Deduction, CADE-20, LNAI 3632, pp. 219–234, Springer, 2005.

42

3 Superposition

First-order calculi considered so far:

Resolution: for first-order clauses without equality.

(Unfailing) Knuth-Bendix Completion: for unit equations.

Goal:

Combine the ideas of ordered resolution (overlap maximal literals in a clause) and
Knuth-Bendix completion (overlap maximal sides of equations) to get a calculus for
equational clauses.

3.1 Recapitulation

First-order logic:

Atom: either P (s1, . . . , sm) with P ∈ Π or s ≈ t.

Literal: Atom or negated atom.

Clause: (possibly empty) disjunction of literals (all variables implicitly universally
quantified).

Refutational theorem proving:

For refutational theorem proving, it is sufficient to consider sets of clauses: every first-
order formula F can be translated into a set of clauses N such that F is unsatisfiable
if and only if N is unsatisfiable.

In the non-equational case, unsatisfiability can for instance be checked using the (or-
dered) resolution calculus.

(Ordered) resolution: inference rules:

Ground case: Non-ground case:

Resolution:
D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

D′ ∨A C ′ ∨ ¬A′

(D′ ∨ C ′)σ

where σ = mgu(A,A′).

Factoring:
C ′ ∨ A ∨ A

C ′ ∨ A

C ′ ∨A ∨A′

(C ′ ∨A)σ

where σ = mgu(A,A′).

43

Ordering restrictions:

Let ≻ be a well-founded and total ordering on ground atoms.

Literal ordering ≻L: compares literals by comparing lexicographically first the respec-
tive atoms using ≻ and then their polarities (negative > positive).

Clause ordering ≻C : compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Ordering restrictions (ground case):

Inference are necessary only if the following conditions are satisfied:

– The left premise of a Resolution inference is not larger than or equal to the right
premise.

– The literals that are involved in the inferences ([¬]A) are maximal in the respec-
tive clauses (strictly maximal for the left premise of Resolution).

Ordering restrictions (non-ground case):

Define the atom ordering ≻ also for non-ground atoms.

Need stability under substitutions: A ≻ B implies Aσ ≻ Bσ.

Note: ≻ cannot be total on non-ground atoms.

For literals involved in inferences we have the same maximality requirements as in the
ground case.

Resolution is (even with ordering restrictions) refutationally complete:

Dynamic view of refutational completeness:

If N is unsatisfiable (N |= ⊥) then fair derivations from N produce ⊥.

Static view of refutational completeness:

If N is saturated, then N is unsatisfiable if and only if ⊥ ∈ N .

Proving refutational completeness for the ground case:

We have to show:

IfN is saturated (i. e., if sufficiently many inferences have been computed), and⊥ /∈ N ,
then N is satisfiable (i. e., has a model).

44

Constructing a candidate interpretation:

Suppose that N be saturated and ⊥ /∈ N . We inspect all clauses in N in ascending
order and construct a sequence of Herbrand interpretations (starting with the empty
interpretation: all atoms are false).

If a clause C is false in the current interpretation, and has a positive and strictly maximal
literal A, then extend the current interpretation such that C becomes true: add A to
the current interpretation. (Then C is called productive.)

Otherwise, leave the current interpretation unchanged.

The sequence of interpretations has the following properties:

(1) If an atom is true in some interpretation, then it remains true in all future inter-
pretations.

(2) If a clause is true at the time where it is inspected, then it remains true in all
future interpretations.

(3) If a clause C = C ′ ∨A is productive, then C remains true and C ′ remains false in
all future interpretations.

Show by induction: if N is saturated and ⊥ /∈ N , then every clause in N is either true
at the time where it is inspected or productive.

Note:
For the induction proof, it is not necessary that the conclusion of an inference is contained
in N . It is sufficient that it is redundant w. r. t. N .

N is called saturated up to redundancy if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

Proving refutational completeness for the non-ground case:

If Ciθ is a ground instance of the clause Ci for i ∈ {0, . . . , n} and

Cn, . . . , C1

C0

and

Cnθ, . . . , C1θ

C0θ

are inferences, then the latter inference is called a ground instance of the former.

45

For a set N of clauses, let GΣ(N) be the set of all ground instances of clauses in N .

Construct the interpretation from the set GΣ(N) of all ground instances of clauses
in N :

N is saturated and does not contain ⊥
⇒ GΣ(N) is saturated and does not contain ⊥
⇒ GΣ(N) has a Herbrand model I
⇒ I is a model of N .

It is possible to encode an arbitrary predicate P using a function fP and a new con-
stant true :

P (t1, . . . , tn) ❀ fP (t1, . . . , tn) ≈ true

¬ P (t1, . . . , tn) ❀ ¬ fP (t1, . . . , tn) ≈ true

In equational logic it is therefore sufficient to consider the case that Π = ∅, i. e., equality
is the only predicate symbol.

Abbreviation: s 6≈ t instead of ¬ s ≈ t.

3.2 The Superposition Calculus – Informally

Conventions:

From now on: Π = ∅ (equality is the only predicate).

Inference rules are to be read modulo symmetry of the equality symbol.

We will first explain the ideas and motivations behind the superposition calculus and
its completeness proof. Precise definitions will be given later.

Ground inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[t] 6≈ s′

D′ ∨ C ′ ∨ s[t′] 6≈ s′

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

(Note: We will need one further inference rule.)

46

Ordering wishlist:

Like in resolution, we want to perform only inferences between (strictly) maximal
literals.

Like in completion, we want to perform only inferences between (strictly) maximal
sides of literals.

Like in resolution, in inferences with two premises, the left premise should not be
larger than the right one.

Like in resolution and completion, the conclusion should then by smaller than the
larger premise.

The ordering should be total on ground literals.

Consequences:

The literal ordering must depend primarily on the larger term of an equation.

As in the resolution case, negative literals must be a bit larger than the corresponding
positive literals.

Additionally, we need the following property: If s ≻ t ≻ u, then s 6≈ u must be larger
than s ≈ t. In other words, we must compare first the larger term, then the polarity,
and finally the smaller term.

The following construction has the required properties:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Constructing a candidate interpretation:

We want to use roughly the same ideas as in the completeness proof for resolution.

But: a Herbrand interpretation does not work for equality: The equality symbol ≈ must
be interpreted by equality in the interpretation.

Solution: Productive clauses contribute ground rewrite rules to a TRS R.

47

The interpretation has the universe TΣ(∅)/R = TΣ(∅)/≈R; a ground atom s ≈ t holds
in the interpretation, if and only if s ≈R t if and only if s↔∗

R
t.

We will construct R in such a way that it is terminating and confluent. In this case,
s ≈R t if and only if s ↓R t.

One problem:

The completeness proof for the resolution calculus depends on the following property:

If C = C ′ ∨ A with a strictly maximal and positive literal A is false in the current
interpretation, then adding A to the current interpretation cannot make any literal of
C ′ true.

This property does not hold for superposition:

Let b ≻ c ≻ d. Assume that the current rewrite system (representing the current
interpretation) contains the rule c→ d. Now consider the clause b ≈ d ∨ b ≈ c.

We need a further inference rule to deal with clauses of this kind, either the “Merging
Paramodulation” rule of Bachmair and Ganzinger or the following “Equality Factoring”
rule due to Nieuwenhuis:

Equality Factoring:
C ′ ∨ s ≈ t′ ∨ s ≈ t

C ′ ∨ t 6≈ t′ ∨ s ≈ t′

Note: This inference rule subsumes the usual factoring rule.

How do the non-ground versions of the inference rules for superposition look like?

Main idea as in the resolution calculus:

Replace identity by unifiability. Apply the mgu to the resulting clause. In the ordering
restrictions, use 6� instead of ≻.

However:

As in Knuth-Bendix completion, we do not want to consider overlaps at or below a
variable position.

Consequence: there are inferences between ground instances Dθ and Cθ of clauses D
and C which are not ground instances of inferences between D and C.

Such inferences have to be treated in a special way in the completeness proof.

48

3.3 The Superposition Calculus – Formally

Until now, we have seen most of the ideas behind the superposition calculus and its
completeness proof.

We will now start again from the beginning giving precise definitions and proofs.

Inference rules:

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

Theorem 3.1 All inference rules of the superposition calculus are correct, i. e., for every
rule

Cn, . . . , C1

C0

we have {C1, . . . , Cn} |= C0.

Proof. Exercise. ✷

49

Orderings:

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t
the multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the
multiset extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

Inferences have to be computed only if the following ordering restrictions are satisfied
(after applying the unifier to the premises):

– In superposition inferences, the left premise is not greater than or equal to the
right one.

– The last literal in each premise is maximal in the respective premise, i. e., there
exists no greater literal (strictly maximal for positive literals in superposition in-
ferences, i. e., there exists no greater or equal literal).

– In these literals, the lhs is neither smaller nor equal than the rhs (except in equality
resolution inferences).

A ground clause C is called redundant w. r. t. a set of ground clauses N , if it follows
from clauses in N that are smaller than C.

A clause is redundant w. r. t. a set of clauses N , if all its ground instances are redundant
w. r. t. GΣ(N).

The set of all clauses that are redundant w. r. t. N is denoted by Red(N).

N is called saturated up to redundancy, if the conclusion of every inference from clauses
in N \Red(N) is contained in N ∪Red(N).

3.4 Superposition: Refutational Completeness

For a set E of ground equations, TΣ(∅)/E is an E-interpretation (or E-algebra) with
universe { [t] | t ∈ TΣ(∅) }.

One can show (similar to the proof of Birkhoff’s Theorem) that for every ground equation
s ≈ t we have TΣ(∅)/E |= s ≈ t if and only if s↔∗

E
t.

In particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground equation,
then TΣ(∅)/R |= s ≈ t if and only if s ↓R t. By abuse of terminology, we say that an
equation or clause is valid (or true) in R if and only if it is true in TΣ(∅)/R.

50

Construction of candidate interpretations (Bachmair & Ganzinger 1990):

Let N be a set of clauses not containing ⊥. Using induction on the clause ordering we
define sets of rewrite rules EC and RC for all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N) with D ≺C C. Then
RC =

⋃
D≺CC

ED.

The set EC contains the rewrite rule s→ t, if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C.

(c) s ≻ t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s→ t}.

(f) s is irreducible w. r. t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N)ED.

Lemma 3.2 If EC = {s→ t} and ED = {u→ v}, then s ≻ u if and only if C ≻C D.

Proof. (⇒): By condition (b), s ≈ t is strictly maximal in C and u ≈ v is strictly
maximal in D, and since the literal ordering is total on ground literals, this implies that
all other literals in C or in D are actually smaller than s ≈ t or u ≈ v, respectively.

Moreover, s ≻ t and u ≻ v by condition (c). Therefore s ≻ u implies {s, t} ≻mul {u, v}.
Hence s ≈ t ≻L u ≈ v �L L for every literal L of D, and thus C ≻C D.

(⇐): Let C ≻C D, then ED ⊆ RC . By condition (f), s must be irreducible w. r. t. RC ,
so s 6= u.

Assume that s 6≻ u. By totality, this implies s � u, and since s 6= u, we obtain s ≺ u.
But then C ≺C D can be shown in the same way as in the (⇒)-part, contradicting the
assumption. ✷

51

Corollary 3.3 The rewrite systems RC and R∞ are convergent (i. e., terminating and
confluent).

Proof. By condition (c), s ≻ t for all rules s → t in RC and R∞, so RC and R∞ are
terminating.

Furthermore, it is easy to check that there are no critical pairs between any two rules:
Assume that there are rules u → v in ED and s → t in EC such that u is a subterm
of s. As ≻ is a reduction ordering that is total on ground terms, we get u ≺ s and
therefore D ≺C C and ED ⊆ RC . But then s would be reducible by RC , contradicting
condition (f).

Now the absence of critical pairs implies local confluence, and termination and local
confluence imply confluence. ✷

Lemma 3.4 If D �C C and EC = {s→ t}, then s ≻ u for every term u occurring in a
negative literal in D and s � u for every term u occurring in a positive literal in D.

Proof. If s � u for some term u occurring in a negative literal u 6≈ v in D, then
{u, u, v, v} ≻mul {s, t}. So u 6≈ v ≻L s ≈ t �L L for every literal L of C, and therefore
D ≻C C.

Similarly, if s ≺ u for some term u occurring in a positive literal u ≈ v in D, then
{u, v} ≻mul {s, t}. So u ≈ v ≻L s ≈ t �L L for every literal L of C, and therefore
D ≻C C. ✷

Corollary 3.5 If D ∈ GΣ(N) is true in RD, then D is true in R∞ and RC for all
C ≻C D.

Proof. If a positive literal of D is true in RD, then this is obvious.

Otherwise, some negative literal s 6≈ t of D must be true in RD, hence s 6 ↓RD
t. As the

rules in R∞ \RD have left-hand sides that are larger than s and t, they cannot be used
in a rewrite proof of s ↓ t, hence s 6 ↓RC

t and s 6 ↓R∞
t. ✷

Corollary 3.6 If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in R∞

and RC for all C ≻C D.

Proof. Obviously, D is true in R∞ and RC for all C ≻C D.

Since all negative literals of D′ are false in RD, it is clear that they are false in R∞ and
RC . For the positive literals u′ ≈ v′ of D′, condition (e) ensures that they are false in
RD ∪ {u → v}. Since u′ � u and v′ � u and all rules in R∞ \ RD have left-hand sides
that are larger than u, these rules cannot be used in a rewrite proof of u′ ↓ v′, hence
u′ 6 ↓RC

v′ and u′ 6 ↓R∞
v′. ✷

52

Lemma 3.7 (“Lifting Lemma”) Let C be a clause and let θ be a substitution such
that Cθ is ground. Then every equality resolution or equality factoring inference from
Cθ is a ground instance of an inference from C.

Proof. Exercise. ✷

Lemma 3.8 (“Lifting Lemma”) Let D = D′ ∨ u ≈ v and C = C ′ ∨ [¬] s ≈ t be two
clauses (without common variables) and let θ be a substitution such that Dθ and Cθ
are ground.

If there is a superposition inference between Dθ and Cθ where uθ and some subterm of
sθ are overlapped, and uθ does not occur in sθ at or below a variable position of s, then
the inference is a ground instance of a superposition inference from D and C.

Proof. Exercise. ✷

Theorem 3.9 (“Model Construction”) Let N be a set of clauses that is saturated
up to redundancy and does not contain the empty clause. Then we have for every ground
clause Cθ ∈ GΣ(N):

(i) ECθ = ∅ if and only if Cθ is true in RCθ.

(ii) If Cθ is redundant w. r. t. GΣ(N), then it is true in RCθ.

(iii) Cθ is true in R∞ and in RD for every D ∈ GΣ(N) with D ≻C Cθ.

Proof. We use induction on the clause ordering ≻C and assume that (i)–(iii) are already
satisfied for all clauses in GΣ(N) that are smaller than Cθ. Note that the “if” part of
(i) is obvious from the construction and that condition (iii) follows immediately from (i)
and Corollaries 3.5 and 3.6. So it remains to show (ii) and the “only if” part of (i).

Case 1: Cθ is redundant w. r. t. GΣ(N).

If Cθ is redundant w. r. t. GΣ(N), then it follows from clauses in GΣ(N) that are smaller
than Cθ. By part (iii) of the induction hypothesis, these clauses are true in RCθ. Hence
Cθ is true in RCθ.

Case 2: xθ is reducible by RCθ.

Suppose there is a variable x occurring in C such that xθ is reducible by RCθ, say
xθ →RCθ

w. Let the substitution θ′ be defined by xθ′ = w and yθ′ = yθ for every variable
y 6= x. The clause Cθ′ is smaller than Cθ. By part (iii) of the induction hypothesis, it
is true in RCθ. By congruence, every literal of Cθ is true in RCθ if and only if the
corresponding literal of Cθ′ is true in RCθ; hence Cθ is true in RCθ.

53

Case 3: Cθ contains a maximal negative literal.

Suppose that Cθ does not fall into Case 1 or 2 and that Cθ = C ′θ ∨ sθ 6≈ s′θ, where
sθ 6≈ s′θ is maximal in Cθ. If sθ ≈ s′θ is false in RCθ, then Cθ is clearly true in RCθ and
we are done. So assume that sθ ≈ s′θ is true in RCθ, that is, sθ ↓RCθ

s′θ. Without loss
of generality, sθ � s′θ.

Case 3.1: sθ = s′θ.

If sθ = s′θ, then there is an equality resolution inference

C ′θ ∨ sθ 6≈ s′θ

C ′θ
.

As shown in the Lifting Lemma, this is an instance of an equality resolution inference

C ′ ∨ s 6≈ s′

C ′σ

where C = C ′ ∨ s 6≈ s′ is contained in N and θ = ρ ◦ σ. (Without loss of generality,
σ is idempotent, therefore C ′θ = C ′σρ = C ′σσρ = C ′σθ, so C ′θ is a ground instance
of C ′σ.) Since Cθ is not redundant w. r. t. GΣ(N), C is not redundant w. r. t. N . As N
is saturated up to redundancy, the conclusion C ′σ of the inference from C is contained
in N ∪ Red(N). Therefore, C ′θ is either contained in GΣ(N) and smaller than Cθ, or it
follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, clauses in GΣ(N) that are smaller than Cθ are true
in RCθ, thus C

′θ and Cθ are true in RCθ.

Case 3.2: sθ ≻ s′θ.

If sθ ↓RCθ
s′θ and sθ ≻ s′θ, then sθ must be reducible by some rule in some EDθ ⊆ RCθ.

(Without loss of generality we assume that C and D are variable disjoint; so we can use
the same substitution θ.) Let Dθ = D′θ ∨ tθ ≈ t′θ with EDθ = {tθ → t′θ}. Since Dθ
is productive, D′θ is false in RCθ. Besides, by part (ii) of the induction hypothesis, Dθ
is not redundant w. r. t. GΣ(N), so D is not redundant w. r. t. N . Note that tθ cannot
occur in sθ at or below a variable position of s, say xθ = w[tθ], since otherwise Cθ would
be subject to Case 2 above. Consequently, the negative superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] 6≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ

is a ground instance of a negative superposition inference from D and C. By saturation
up to redundancy, its conclusion is either contained in GΣ(N) and smaller than Cθ, or
it follows from clauses in GΣ(N) that are smaller than itself (and therefore smaller than
Cθ). By the induction hypothesis, these clauses are true in RCθ, thus D′θ ∨ C ′θ ∨
sθ[t′θ] 6≈ s′θ is true in RCθ. Since D′θ and sθ[t′θ] 6≈ s′θ are false in RCθ, both C ′θ and
Cθ must be true.

54

Case 4: Cθ does not contain a maximal negative literal.

Suppose that Cθ does not fall into Cases 1 to 3. Then Cθ can be written as C ′θ ∨ sθ ≈
s′θ, where sθ ≈ s′θ is a maximal literal of Cθ. If ECθ = {sθ→ s′θ} or C ′θ is true in RCθ

or sθ = s′θ, then there is nothing to show, so assume that ECθ = ∅ and that C ′θ is false
in RCθ. Without loss of generality, sθ ≻ s′θ.

Case 4.1: sθ ≈ s′θ is maximal in Cθ, but not strictly maximal.

If sθ ≈ s′θ is maximal in Cθ, but not strictly maximal, then Cθ can be written as
C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. In this case, there is a equality

factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

This inference is a ground instance of an inference from C. By saturation, its conclusion
is true in RCθ. Trivially, t

′θ = s′θ implies t′θ ↓RCθ
s′θ, so t′θ 6≈ s′θ must be false and Cθ

must be true in RCθ.

Case 4.2: sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible by some rule in
EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ and EDθ = {tθ → t′θ}. Since Dθ is productive,
Dθ is not redundant and D′θ is false in RCθ. We can now proceed in essentially the
same way as in Case 3.2: If tθ occurred in sθ at or below a variable position of s,
say xθ = w[tθ], then Cθ would be subject to Case 2 above. Otherwise, the positive

superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] ≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] ≈ s′θ

is a ground instance of a positive superposition inference from D and C. By saturation
up to redundancy, its conclusion is true in RCθ. Since D′θ and C ′θ are false in RCθ,
sθ[t′θ] ≈ s′θ must be true in RCθ. On the other hand, tθ ≈ t′θ is true in RCθ, so by
congruence, sθ[tθ] ≈ s′θ and Cθ are true in RCθ.

55

Case 4.3: sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is irreducible by RCθ. Then there
are three possibilities: Cθ can be true in RCθ, or C

′θ can be true in RCθ ∪ {sθ → s′θ},
or ECθ = {sθ → s′θ}. In the first and the third case, there is nothing to show. Let us
therefore assume that Cθ is false in RCθ and C ′θ is true in RCθ ∪ {sθ → s′θ}. Then
C ′θ = C ′′θ ∨ tθ ≈ t′θ, where the literal tθ ≈ t′θ is true in RCθ ∪ {sθ → s′θ} and false
in RCθ. In other words, tθ ↓RCθ∪{sθ→s′θ} t

′θ, but not tθ ↓RCθ
t′θ. Consequently, there is a

rewrite proof of tθ →∗ u←∗ t′θ by RCθ ∪ {sθ → s′θ} in which the rule sθ → s′θ is used at
least once. Without loss of generality we assume that tθ � t′θ. Since sθ ≈ s′θ ≻L tθ ≈ t′θ
and sθ ≻ s′θ we can conclude that sθ � tθ ≻ t′θ. But then there is only one possibility
how the rule sθ → s′θ can be used in the rewrite proof: We must have sθ = tθ and
the rewrite proof must have the form tθ → s′θ →∗ u ←∗ t′θ, where the first step uses
sθ → s′θ and all other steps use rules from RCθ. Consequently, s

′θ ≈ t′θ is true in RCθ.
Now observe that there is an equality factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

whose conclusion is true in RCθ by saturation. Since the literal t′θ 6≈ s′θ must be false in
RCθ, the rest of the clause must be true in RCθ, and therefore Cθ must be true in RCθ,
contradicting our assumption. This concludes the proof of the theorem. ✷

A Σ-interpretation A is called term-generated, if for every b ∈ UA there is a ground term
t ∈ TΣ(∅) such that b = A(β)(t).

Lemma 3.10 Let N be a set of (universally quantified) Σ-clauses and let A be a term-
generated Σ-interpretation. Then A is a model of GΣ(N) if and only if it is a model
of N .

Proof. (⇒): Let A |= GΣ(N); let (∀~xC) ∈ N . Then A |= ∀~xC iff A(γ[xi 7→ ai])(C) = 1
for all γ and ai. Choose ground terms ti such that A(γ)(ti) = ai; define θ such that
xiθ = ti, then A(γ[xi 7→ ai])(C) = A(γ ◦ θ)(C) = A(γ)(Cθ) = 1 since Cθ ∈ GΣ(N).

(⇐): Let A be a model of N ; let ∀~xC ∈ N and Cθ ∈ GΣ(N). Then A |= ∀~xC and
therefore A |= C. Consequently A(γ)(Cθ) = A(γ ◦ θ)(C) = 1. ✷

Theorem 3.11 (Refutational Completeness: Static View) Let N be a set of
clauses that is saturated up to redundancy. Then N has a model if and only if N
does not contain the empty clause.

Proof. If ⊥ ∈ N , then obviously N does not have a model. If ⊥ /∈ N , then the interpre-
tation R∞ (that is, TΣ(∅)/R∞) is a model of all ground instances in GΣ(N) according
to part (iii) of the model construction theorem. As TΣ(∅)/R∞ is term-generated, it is a
model of N . ✷

56

