

Universität des Saarlandes FR Informatik

Sophie Tourret Uwe Waldmann May 15, 2018

Tutorials for "Automated Reasoning II" Exercise sheet 5

Exercise 5.1:

Prove that the multiset extension of a reduction ordering is stable under substitutions (which implies that the literal ordering defined on page 50 of the lecture notes is stable under substitutions). Note: There are several ways to characterize a multiset ordering, see e.g. the lecture notes from the previous semester or the book by Baader and Nipkow. You may pick the most convenient one for this purpose.

Exercise 5.2:

On page 50 of the lecture notes it is stated that the ordering restrictions of the inference rules of the superposition calculus must be satisfied *after applying the mgu to the premises*. Give a simple example that shows that a literal may be maximal in a clause, but that the maximality requirement may be violated after applying the mgu.

Exercise 5.3:

Let $D = D' \lor t \approx t'$ and C[u] be two clauses such that there is a (positive or negative) superposition inference between D and C with conclusion $C_0 = (D' \lor C[t'])\sigma$, where σ is the mgu of t and u. Suppose that $t\sigma$ occurs at least once in $C[t']\sigma$. Let C'_0 be the clause that we obtain from C_0 if every occurrence of $t\sigma$ within $C[t']\sigma$ is replaced by $t'\sigma$. (As an example, consider $D = g(x) \not\approx g(y) \lor f(x, y) \approx f(y, x), C = h(f(g(b), z)) \approx f(g(b), z), t = f(x, y),$ $t\sigma = f(g(b), z), C_0 = g(g(b)) \not\approx g(z) \lor h(f(z, g(b))) \approx f(g(b), z), C'_0 = g(g(b)) \not\approx g(z) \lor$ $h(f(z, g(b))) \approx f(z, g(b)).)$

- (a) C'_0 is entailed by D and C_0 . Why?
- (b) C_0 is not redundant w.r.t. $\{D, C'_0\}$. Why?
- (c) The inference that produces C_0 is redundant w.r.t. $\{D, C'_0\}$. Why?

Hint 1: Read the definitions of redundant inferences and instances of inferences really carefully. Hint 2: The ordering restrictions are an integral part of the definition of superposition inferences.

Exercise 5.4:

Compute R_{∞} for the clause set $\{f(x) \approx a\}$ and the signature $\Sigma = (\{f/1, g/1, a/0\}, \emptyset)$; use the LPO with g > f > a.

Bring your solution (or solution attempt) to the tutorial on May 22.