
One special variable x0 whose value is fixed to 0 is permitted;
this allows to express atoms like x < 3 in the form x− x0 < 3.

Solving difference logic:

Let F be a conjunction in DL.
For simplicity: only non-strict inequalities.

Define a weighted graph G:

Vertices V : Variables in F .

Edges E: x− y ≤ c ❀ edge (x, y) with weight c.

Theorem: F is unsatisfiable iff G has a negative cycle.

Can be checked in O(|V | · |E|) using the Bellman-Ford algorithm.

1.9 C-Arithmetic

In languages like C: Bounded integer arithmetic (modulo 2n), in device drivers also
combined with bitwise operations.

Bit-Blasting (encode everything as boolean circuits, use CDCL):

Naive encoding: possible, but often too inefficient.

If combined with over-/underapproximation techniques (Bryant, Kroening, et al.):
successful.

1.10 Decision Procedures for Data Structures

There are decision procedures for, e. g.,

Arrays (read, write)

Lists (car, cdr, cons)

Sets or multisets with cardinalities

Bitvectors

Note: There are usually restrictions on quantifications. Unrestricted universal quantifi-
cation can lead to undecidability.

21

Literature: Further Decision Procedures

Aaron R. Bradley, Zohar Manna: The Calculus of Computation. Springer, 2007.

Aaron R. Bradley, Zohar Manna, Henny B. Sipma: What’s decidable about arrays?
Verification, Model Checking, and Abstract Interpretation (VMCAI), LNCS 3855, pp.
427-442, Springer, 2006.

Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strich-
man, Bryan Brady: Deciding bit-vector arithmetic with abstraction. 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’07), LNCS 4424, pp. 358–372, Springer, 2007.

George E. Collins: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition. 2nd. GI Conf. Automata Theory and Formal Languages, LNCS 33, pp.
134–183, Springer, 1975.

D. C. Cooper: Theorem Proving in Arithmetic Without Multiplication. Machine Intel-
ligence, vol. 7, pp. 91–99. American Elsevier, New York, 1972.

George B. Dantzig: Linear Programming and Extensions. Princeton Univ. Press, 1963.

L. V. Kantorovich: Mathematical Methods in the Organization and Planning of Pro-
duction. Publication House of the Leningrad State University, 1939. Translated in
Management Science, 6:366–422, 1960.

Narendra Karmarkar: A New Polynomial Time Algorithm for Linear Programming.
Combinatorica, 4(4):373–395, 1984.

Daniel Kroening, Ofer Strichman: Decision Procedures – An Algorithmic Point of View.
Springer, 2008.

Mojżesz Presburger: Über der Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus Premier Congrès des Mathématiciens des Pays Slaves, Warsaw, pp. 92-101,
1929.

William Pugh: The Omega Test: a fast and practical integer programming algorithm
for dependence analysis. Comm. of the ACM, 35(8):102-114, 1992.

Stefan Ratschan: Approximate Quantified Constraint Solving by Cylindrical Box De-
composition. Reliable Computing, 8(1):21–42, 2002.

Alfred Tarski: A Decision Method for Elementary Algebra and Geometry. Univ. of
California Press, Berkeley, 1951.

22

1.11 Combining Decision Procedures

Problem:

Let T1 and T2 be first-order theories over the signatures Σ1 and Σ2.

Assume that we have decision procedures for the satisfiability of existentially quanti-
fied formulas (or the validity of universally quantified formulas) w. r. t. T1 and T2.

Can we combine them to get a decision procedure for the satisfiability of existentially
quantified formulas w. r. t. T1 ∪ T2 ?

General assumption:

Σ1 and Σ2 are disjoint.

The only symbol shared by T1 and T2 is built-in equality.

We consider only conjunctions of literals.

For general formulas, convert to DNF first and consider each conjunction individually.

Abstraction

To be able to use the individual decision procedures, we have to transform the original
formula in such a way that each atom contains only symbols of one of the signatures
(plus variables).

This process is known as variable abstraction or purification.

We apply the following rule as long as possible:

∃~x (F [t])

∃~x, y (F [y] ∧ t ≈ y)

if the top symbol of t belongs to Σi and t occurs in F directly below a Σj-symbol
or in a (positive or negative) equation s ≈ t where the top symbol of s belongs to
Σj (i 6= j), and if y is a new variable.

It is easy to see that the original and the purified formula are equivalent.

23

Stable Infiniteness

Problem:

Even if the Σ1-formula F1 and the Σ2-formula F2 do not share any symbols (not even
variables), and if F1 is T1-satisfiable and F2 is T2-satisfiable, we cannot conclude that
F1 ∧ F2 is (T1 ∪ T2)-satisfiable.

Example:

Consider

T1 = {∀x, y, z (x ≈ y ∨ x ≈ z ∨ y ≈ z)}

and

T2 = {∃x, y, z (x 6≈ y ∧ x 6≈ z ∧ y 6≈ z)}.

All T1-models have at most two elements, and all T2-models have at least three ele-
ments.

Since T1 ∪ T2 is contradictory, there are no (T1 ∪ T2)-satisfiable formulas.

To ensure that T1-models and T2-models can be combined to (T1 ∪ T2)-models, we require
that both T1 and T2 are stably infinite.

A first-order theory T is called stably infinite, if every existentially quantified formula
that has a T -model has also a T -model with a (countably) infinite universe.

Note: By the Löwenheim–Skolem theorem, “countable” is redundant here.

Shared Variables

Even if ∃~x F1 is T1-satisfiable and ∃~x F2 is T2-satisfiable, it can happen that ∃~x (F1 ∧ F2)
is not (T1 ∪ T2)-satisfiable, for instance because the shared variables x and y must be
equal in all T1-models of ∃~xF1 and different in all T2-models of ∃~x F2.

Example:

Consider

F1 = (x+ (−y) ≈ 0),

and

F2 = (f(x) 6≈ f(y))

where T1 is linear rational arithmetic and T2 is EUF.

We must exchange information about shared variables to detect the contradiction.

24

The Nelson–Oppen Algorithm (Non-deterministic Version)

Suppose that ∃~xF is a purified conjunction of Σ1 and Σ2-literals.

Let F1 be the conjunction of all literals of F that do not contain Σ2-symbols; let F2 be
the conjunction of all literals of F that do not contain Σ1-symbols. (Equations between
variables are in both F1 and F2.)

The Nelson–Oppen algorithm starts with the pair F1, F2 and applies the following infer-
ence rules.

Unsat:

F1, F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i.

Branch:

F1, F2

F1 ∧ (x ≈ y), F2 ∧ (x ≈ y) | F1 ∧ (x 6≈ y), F2 ∧ (x 6≈ y)

if x and y are two different variables appearing in
both F1 and F2 such that neither x ≈ y nor x 6≈ y
occurs in both F1 and F2

“|” means non-deterministic (backtracking!) branching of the derivation into two sub-
derivations. Derivations are therefore trees. All branches need to be reduced until
termination.

Clearly, all derivation paths are finite since there are only finitely many shared variables
in F1 and F2, therefore the procedure represented by the rules is terminating.

We call a constraint configuration to which no rule applies irreducible.

Theorem 1.1 (Soundness) If “Branch” can be applied to F1, F2, then ∃~x (F1 ∧ F2)
is satisfiable in T1 ∪ T2 if and only if one of the successor configurations of F1, F2 is
satisfiable in T1 ∪ T2.

Corollary 1.2 If all paths in a derivation tree from F1, F2 end in ⊥, then ∃~x (F1 ∧ F2)
is unsatisfiable in T1 ∪ T2.

For completeness we need to show that if one branch in a derivation terminates with
an irreducible configuration F1, F2 (different from ⊥), then ∃~x (F1 ∧ F2) (and, thus, the
initial formula of the derivation) is satisfiable in the combined theory.

25

As ∃~x (F1 ∧ F2) is irreducible by “Unsat”, the two formulas are satisfiable in their re-
spective component theories, that is, we have Ti-models Ai of ∃~xFi for i ∈ {1, 2}. We
are left with combining the models into a single one that is both a model of the combined
theory and of the combined formula. These constructions are called amalgamations.

Let F be a Σi-formula and let S be a set of variables of F . F is called compatible with
an equivalence ∼ on S if the formula

∃~z
(

F ∧
∧

x∼y

x ≈ y ∧
∧

x,y∈S, x 6∼y

x 6≈ y
)

(1)

is Ti-satisfiable whenever F is Ti-satisfiable. This expresses that F does not contradict
equalities between the variables in S as given by ∼.

Proposition 1.3 If F1, F2 is a pair of conjunctions over T1 and T2, respectively, that is
irreducible by “Branch”, then both F1 and F2 are compatible with some equivalence ∼
on the shared variables S of F1 and F2.

Proof. If F1, F2 is irreducible by the branching rule, then for each pair of shared vari-
ables x and y, both F1 and F2 contain either x ≈ y or x 6≈ y. Choose ∼ to be the
equivalence given by all (positive) variable equations between shared variables that are
contained in F1.

Lemma 1.4 (Amalgamation Lemma) Let T1 and T2 be two stably infinite theories
over disjoint signatures Σ1 and Σ2. Furthermore let F1, F2 be a pair of conjunctions of
literals over T1 and T2, respectively, both compatible with some equivalence ∼ on the
shared variables of F1 and F2. Then F1 ∧ F2 is (T1 ∪ T2)-satisfiable if and only if each
Fi is Ti-satisfiable.

Proof. The “only if” part is obvious.

For the “if” part, assume that each of the Fi is Ti-satisfiable. That is, there exist
models Ai of Ti and variable assignments βi such that Ai, βi |= Fi. As the Fi are
compatible with an equivalence ∼ on their shared variables, we may assume that the
βi also satisfy the extended conjunctions in (1) with S the set of shared variables. In
particular, whenever we have two shared variables x and y, β1(x) = β1(y) if and only if
β2(x) = β2(y). Since the theories are stably infinite we may additionally assume that the
Ai are of cardinality ω, hence there are bijections ρi from the domain of Ai to N such that
ρ1(β1(x))) = ρ2(β2(x)) for each shared variable x. Now define A to be the algebra having
N as its domain; for f or P in Σi define fA(n1, . . . , nk) = ρi(fAi

(ρ−1

i (n1), . . . , ρ
−1

i (nk)))
and PA(n1, . . . , nk) ⇔ PAi

(ρ−1

i (n1), . . . , ρ
−1

i (nk)). Define β(x) = ρi(βi(x)) if x is a
variable occurring in Fi. By construction of the ρi this definition is independent of the
choice of i. Clearly A|Σi

, β |= Fi, for i = 1, 2, hence A, β |= F1 ∧ F2. Moreover, the
reducts A|Σi

are isomorphic (via ρi) to Ai and thus are models of Ti, so that A is a
model of T1 ∪ T2 as required.

26

Theorem 1.5 The non-deterministic Nelson–Oppen algorithm is terminating and com-
plete for deciding satisfiability of pure conjunctions of literals F1 and F2 over T1 ∪ T2 for
signature-disjoint, stably infinite theories T1 and T2.

Proof. Suppose that F1, F2 is irreducible by the inference rules of the Nelson–Oppen
algorithm. Applying the amalgamation lemma in combination with Prop. 1.3 we infer
that F1, F2 is satisfiable w. r. t. T1 ∪ T2.

Convexity

The number of possible equivalences of shared variables grows superexponentially with
the number of shared variables, so enumerating all possible equivalences non-determin-
istically is going to be inefficient.

A much faster variant of the Nelson–Oppen algorithm exists for convex theories.

A first-order theory T is called convex w. r. t. equations, if for every conjunction Γ
of Σ-equations and non-equational Σ-literals and for all Σ-equations Ai (1 ≤ i ≤ n),
whenever T |= ∀~x (Γ → A1 ∨ . . . ∨ An), then there exists some index j such that
T |= ∀~x (Γ → Aj).

Theorem 1.6 If a first-order theory T is convex w. r. t. equations and has no trivial
models (i. e., models with only one element), then T is stably infinite.

Proof. We shall prove the contrapositive of the statement. Suppose T is not stably
infinite. Then there exists a satisfiable conjunction of literals ∃~xF that has only finite
models w. r. t. T . We split F into two conjunctions F+ and F−, such that F− contains
the negative equational literals in F and F+ contains the rest. As T is a first-order
theory, it is compact, hence all models of F are bounded in cardinality by some number
m. Now consider the clause C = F+ → ¬F− ∨

∨

1≤i<j≤m+1
yi ≈ yj, with fresh variables

y1, . . . , ym+1 not occurring in F . T |= ∀~x, ~y C, as the clause exactly expresses that all
models of F have size less than or equal to m. However, T 6|= ∀~x, ~y (F+ → A), for any
literal A of ¬F− (as otherwise F would not be satisfiable), and also T 6|= ∀~x, ~y (F+ →
yi ≈ yj), for each i, j, as otherwise T would have trivial models, which we have excluded.

27

Lemma 1.7 Suppose T is convex, F a conjunction of literals, and S a subset of its
variables. Let, for any pair of variables xi and xj in S, xi ∼ xj if and only if T |=
∀~x (F → xi ≈ xj). Then F is compatible with ∼.

Proof. We show that with this choice of ∼ the constraint (1) is satisfiable in T whenever
F is. Suppose, to the contrary, that F is satisfiable but (1) is not, that is,

T |= ∀~z
(

F →
∨

x∼y

x 6≈ y ∨
∨

x,y∈S, x 6∼y

x ≈ y
)

or, equivalently,

T |= ∀~z
(

F+ ∧
∧

x∼y

x ≈ y → ¬F− ∨
∨

x,y∈S, x 6∼y

x ≈ y
)

.

By convexity of T , the antecedent implies one of the equations of the succedent. Since
the equations x ≈ y, with x ∼ y, are entailed by F and since F is satisfiable, this means
that this equation must come from the last disjunct. In other words, there exists a pair
of different variables x′ and y′ in S such that x′ 6∼ y′ and

T |= ∀~z
(

F+ ∧
∧

x∼y

x ≈ y → x′ ≈ y′
)

.

Since

T |= ∀~z
(

F →
∧

x∼y

x ≈ y
)

,

we derive T |= ∀~z
(

F → x′ ≈ y′
)

, which is impossible.

The Nelson–Oppen Algorithm (Deterministic Version for Convex Theories)

Unsat:

F1, F2

⊥

if ∃~x Fi is unsatisfiable w. r. t. Ti for some i.

Propagate:

F1, F2

F1 ∧ (x ≈ y), F2 ∧ (x ≈ y)

if x and y are two different variables appearing in
both F1 and F2 such that
T1 |= ∀~x (F1 → x ≈ y) and T2 6|= ∀~x (F2 → x ≈ y)
or T2 |= ∀~x (F2 → x ≈ y) and T1 6|= ∀~x (F1 → x ≈ y).

28

Theorem 1.8 If T1 and T2 are signature-disjoint theories that are convex w. r. t. equa-
tions and have no trivial models, then the deterministic Nelson–Oppen algorithm is
terminating, sound and complete for deciding satisfiability of pure conjunctions of liter-
als F1 and F2 over T1 ∪ T2.

Proof. Termination and soundness are obvious: there are only finitely many different
equations that can be added, and each of them is entailed by given formulas.

For completeness, we have to show that every configuration that is irreducible by “Unsat”
and “Propagate” is satisfiable w. r. t.. T1 ∪ T2: Let F1, F2 be such a configuration. As it is
irreducible by “Propagate”, we have, for every equation x ≈ y between shared variables,
T1 |= ∀~x (F1 → x ≈ y) if and only if T2 |= ∀~x (F2 → x ≈ y). Consequently, F1 and F2 are
compatible with the same equivalence on the shared variables of F1 and F2. Moreover,
each of the formulas Fi is Ti-satisfiable, and since convexity implies stable infiniteness, Fi

has a Ti-model with a countably infinite universe. Hence, by the amalgamation lemma,
F1 ∧ F2 is (T1 ∪ T2)-satisfiable.

Corollary 1.9 The deterministic Nelson–Oppen algorithm for convex theories requires
at most O(n3) calls to the individual decision procedures for the component theories,
where n is the number of shared variables.

Iterating Nelson–Oppen

The Nelson–Oppen combination procedures can be iterated to work with more than two
component theories by virtue of the following observations where signature disjointness
is assumed:

Theorem 1.10 If T1 and T2 are stably infinite, then so is T1 ∪ T2.

Proof. The non-deterministic Nelson–Oppen algorithm is sound and complete for T1 ∪
T2, that is, an existentially quantified conjunction F over Σ1 ∪ Σ2 is satisfiable if and
only if in every derivation from the purified form of F there exists a branch leading to
some irreducible constraint F1, F2 entailing F . The amalgamation lemma 1.4 constructs
a model of cardinality ω for F from the models of F1 and F2.

Lemma 1.11 A first-order theory T is convex w. r. t. equations if and only if for every
conjunction Γ of Σ-equations and non-equational Σ-literals and for all equations xi ≈ x′

i

(1 ≤ i ≤ n), whenever T |= ∀~x (Γ → x1 ≈ x′
1 ∨ . . . ∨ xn ≈ x′

n), then there exists some
index j such that T |= ∀~x (Γ → xj ≈ x′

j).

29

Lemma 1.12 Let T be a first-order theory that is convex w. r. t. equations and and has
no trivial models. Let F is a conjunction of literals; let F− be the conjunction of all
negative equational literals in F and let F+ be the conjunction of all remaining literals
in F . If T |= ∀~x (F → x ≈ y), then ∃~xF is T -unsatisfiable or T |= ∀~x (F+ → x ≈ y).

Proof. T |= ∀~x (F → x ≈ y) is equivalent to T |= ∀~x (F+ → (¬F− ∨ x ≈ y)). By
convexity of T we know that T |= ∀~x (F+ → x ≈ y) or T |= ∀~x (F+ → A) for some
literal ¬A in F−. In the latter case, ∃~x (F+ ∧ ¬A) is T -unsatisfiable; hence ∃~x F , that
is, ∃~x (F+ ∧ F−) is T -unsatisfiable as well.

Theorem 1.13 If T1 and T2 are convex w. r. t. equations and do not have trivial models,
then so is T1 ∪ T2.

Proof. Suppose that T1 and T2 are convex w. r. t. equations and do not have triv-
ial models. Assume furthermore that T |= ∀~x (Γ → x1 ≈ x′

1 ∨ . . . ∨ xn ≈ x′
n) for

some conjunction Γ of (Σ1 ∪ Σ2)-equations and non-equational (Σ1 ∪ Σ2)-literals. Then
∃~x (Γ ∧ x1 6≈ x′

1 ∧ . . . ∧ xn 6≈ x′
n) is T -unsatisfiable, and we can detect this by some

run of the deterministic Nelson–Oppen algorithm starting with ∃~x, ~y (Γ1 ∧ Γ2 ∧ x1 6≈
x′
1 ∧ . . . ∧ xn 6≈ x′

n), where Γ1 ∧ Γ2 is the result of purifying Γ. This run consists of a
sequence of “Propagate” steps followed by a final “Unsat” step, and without loss of gen-
erality, we use the “Propagate” rule only if “Unsat” cannot be applied. Consequently,
whenever we add an equation x ≈ y that is entailed by F1 w. r. t. T1 or by F2 w. r. t. T2,
then it is already entailed by the positive and the non-equational literals in F1 or F2.
Furthermore, due to the convexity of T1 and T2, the final “Unsat” step depends on at
most one negative equational literal in F1 or F2. We can therefore construct a similar
Nelson–Oppen derivation that starts with only the positive and the non-equational lit-
erals in Γ1 and Γ2, plus at most one negative equational literal that may be needed for
the “Unsat” step. If a negative equational literal is needed, it is one of the xj 6≈ x′

j;
then ∃~x (Γ ∧ xj 6≈ x′

j) is T -unsatisfiable and ∀~x (Γ → xj ≈ x′
j) is T -valid; if no negative

equational literal is needed at all, then ∃~xΓ is T -unsatisfiable, so ∀~x (Γ → xj ≈ x′
j) is

T -valid for every j.

30

Extensions

Many-sorted logics:

read/2 becomes read : array × int → data.
write/3 becomes write : array × int× data → array.
Variables: x : data

Only one declaration per function/predicate/variable symbol.
All terms, atoms, substitutions must be well-sorted.

Algebras:

Instead of universe UA, one set per sort: arrayA, intA.

Interpretations of function and predicate symbols correspond to their declarations:
readA : arrayA × intA → dataA

If we consider combinations of theories with shared sorts but disjoint function and pred-
icate symbols, then we get essentially the same combination results as before.

However, stable infiniteness and/or convexity are only required for the shared sorts.

Non-stably infinite theories:

If we impose stronger conditions on one theory, we can relax the conditions on the
other one.

For instance, EUF can be combined with any other theory; stable infiniteness is not
required.

Non-disjoint combinations:

Have to ensure that both decision procedures interpret shared symbols in a compatible
way.

Some results, e. g. by Ghilardi, using strong model theoretical conditions on the the-
ories.

31

Another Combination Method

Shostak’s method:

Applicable to combinations of EUF and solvable theories.

A Σ-theory T is called solvable, if there exists an effectively computable function solve

such that, for any T -equation s ≈ t:

(A) solve(s ≈ t) = ⊥ if and only if T |= ∀~x (s 6≈ t);

(B) solve(s ≈ t) = ∅ if and only if T |= ∀~x (s ≈ t); and otherwise

(C) solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un}, where

– the xi are pairwise different variables occurring in s ≈ t;

– the xi do not occur in the uj; and

– T |= ∀~x ((s ≈ t) ↔ ∃~y (x1 ≈ u1 ∧ . . . ∧ xn ≈ un)), where ~y are the variables
occurring in one of the uj but not in s ≈ t, and ~x ∩ ~y = ∅.

Additionally useful (but not required):

A canonizer, that is, a function that simplifies terms by computing some unique normal
form

Main idea of the procedure:

If s ≈ t is a positive equation and solve(s ≈ t) = {x1 ≈ u1, . . . , xn ≈ un}, replace
s ≈ t by x1 ≈ u1 ∧ . . .∧ xn ≈ un and use these equations to eliminate the xi elsewhere.

Practical problem:

Solvability is a rather restrictive condition.

Literature

Harald Ganzinger: Shostak Light. Automated Deduction, CADE-18, LNCS 2392, pp
332–346, Springer, 2002.

Silvio Ghilardi: Model Theoretic Methods in Combined Constraint Satisfiability. Jour-
nal of Automated Reasoning, 33(3–4):221–249, 2005.

Greg Nelson, Derek C. Oppen: Simplification by Cooperating Decision Procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–257, 1979.

Robert E. Shostak: Deciding Combinations of Theories. Journal of the ACM, 31(1):1–
12, 1984.

32

