
The signature can be extended by further symbols:

≤/2, >/2, ≥/2, 6≈/2: defined using < and ≈

−/1: Skolem function for inverse axiom

−/2: defined using +/2 and −/1

divn/1: Skolem functions for divisibility axiom for all n ≥ 1.

multn/1: defined by ∀x (multn(x) ≈ x+ · · ·+ x
︸ ︷︷ ︸

n times

) for all n ≥ 1.

multq/1: defined using multn, divn, − for all q ∈ Q.

(We usually write q · t or qt instead of multq(t).)

q/0 (for q ∈ Q): defined by q ≈ q · 1.

Note: Every formula using the additional symbols is ODAG-equivalent to a formula over
the base signature.

When · is considered as a binary operator, (ordered) divisible torsion-free abelian groups
correspond to (ordered) rational vector spaces.

Fourier-Motzkin Quantifier Elimination

Linear rational arithmetic permits quantifier elimination: every formula ∃xF or ∀xF
in linear rational arithmetic can be converted into an equivalent formula without the
variable x.

The method was discovered in 1826 by J. Fourier and re-discovered by T. Motzkin in
1936.

Observation: Every literal over the variables x, y1, . . . , yn can be converted into an
ODAG-equivalent literal x ∼ t[~y] or 0 ∼ t[~y], where ∼ ∈ {<,>,≤,≥,≈, 6≈} and t[~y]
has the form

∑

i qi · yi + q0.

In other words, we can either eliminate x completely or isolate in on one side of the
literal, and we can replace every negative ordering literal by a positive one.

Moreover, we can convert every 6≈-literal into an ODAG-equivalent disjunction of two
<-literals.

9

We first consider existentially quantified conjunctions of atoms.

If the conjunction contains an equation x ≈ t[~y], we can eliminate the quantifier ∃x by
substitution:

∃x (x ≈ t[~y] ∧ F)

is equivalent to

F{x 7→ t[~y]}

If x occurs only in inequations, then

∃x
(
∧

i x < si(~y) ∧
∧

j x ≤ tj(~y)

∧
∧

k x > uk(~y) ∧
∧

l x ≥ vl(~y) ∧
∧

m 0 ∼m wm(~y)
)

is equivalent to

∧

i

∧

k si(~y) > uk(~y) ∧
∧

j

∧

k tj(~y) > uk(~y)

∧
∧

i

∧

l si(~y) > vl(~y) ∧
∧

j

∧

l tj(~y) ≥ vl(~y)

∧
∧

m 0 ∼m wm(~y)

Proof: (⇒) by transitivity;
(⇐) take 1

2
(min{si, tj}+max{uk, vl}) as a witness.

Extension to arbitrary formulas:

Transform into prenex formula;

if innermost quantifier is ∃: transform matrix into DNF and move ∃ into disjunction;

if innermost quantifier is ∀: replace ∀xF by ¬∃x¬F , then eliminate ∃.

Consequence: every closed formula over the signature of ODAGs is ODAG-equivalent
to either ⊤ or ⊥.

Consequence: ODAGs are a complete theory, i. e., every closed formula over the signature
of ODAGs is either valid or unsatisfiable w. r. t. ODAGs.

Consequence: every closed formula over the signature of ODAGs holds either in all
ODAGs or in no ODAG.

ODAGs are indistinguishable by first-order formulas over the signature of ODAGs.

(These properties do not hold for extended signatures!)

10

Fourier-Motzkin: Complexity

One FM-step for ∃:

formula size grows quadratically, therefore O(n2) runtime.

m quantifiers ∃ . . .∃:

naive implementation produces a doubly exponential number of inequations, therefore
needs O(n2m) runtime (the number of necessary inequations grows only exponentially,
though).

m quantifiers ∃∀∃∀ . . . ∃:

CNF/DNF conversion (exponential!) required after each step;
therefore non-elementary runtime.

Loos-Weispfenning Quantifier Elimination

A more efficient way to eliminate quantifiers in linear rational arithmetic was developed
by R. Loos and V. Weispfenning (1993).

The method is also known as “test point method” or “virtual substitution method”.

For simplicity, we consider only one particular ODAG, namely Q (as we have seen above,
the results are the same for all ODAGs).

Let F (x, ~y) be a positive boolean combination of linear (in-)equations x ∼i si(~y) and
0 ∼j s′j(~y) with ∼i,∼j ∈ {≈, 6≈, <,≤, >,≥}, that is, a formula built from linear (in-)
equations, ∧ and ∨ (but without ¬).

Goal: Find a finite set T of “test points” so that

∃xF (x, ~y) |=|
∨

t∈T

F (x, ~y) {x 7→ t}

In other words: We want to replace the infinite disjunction ∃x by a finite disjunction.

If we keep the values of the variables ~y fixed, then we can consider F as a function
F : x 7→ F (x, ~y) from Q to {0, 1}.

The value of each of the atoms si(~y) ∼i x changes only at si(~y), and the value of F can
only change if the value of one of its atoms changes.

Let δ(~y) = min{ |si(~y)− sj(~y)| | si(~y) 6= sj(~y) }

F is a piecewise constant function; more precisely, the set of all x with F (x, ~y) = 1 is
a finite union of intervals. (The union may be empty, the individual intervals may be
finite or infinite and open or closed.)

11

Moreover, each of the intervals has either length 0 (i. e., it consists of one point), or its
length is at least δ(~y).

If the set of all x for which F (x, ~y) is 1 is non-empty, then

(i) F (x, ~y) = 1 for all x ≤ r(~y) for some r(~y) ∈ Q

(ii) or there is some point where the value of F (x, ~y) switches from 0 to 1 when we
traverse the real axis from −∞ to +∞.

We use this observation to construct a set of test points.

We start with some “sufficiently small” test point r(~y) to take care of case (i).

For case (ii), we observe that F (x, ~y) can only switch from 0 to 1 if one of the atoms
switches from 0 to 1. (We consider only positive boolean combinations of atoms, and ∧
and ∨ are monotonic w. r. t. truth values.)

x ≤ si(~y) and x < si(~y) do not switch from 0 to 1 when x grows.

x ≥ si(~y) and x ≈ si(~y) switch from 0 to 1 at si(~y)
⇒ si(~y) is a test point.

x > si(~y) and x 6≈ si(~y) switch from 0 to 1 “right after” si(~y)
⇒ si(~y) + ε (for some 0 < ε < δ(~y)) is a test point.

If r(~y) is sufficiently small and 0 < ε < δ(~y), then

T := {r(~y)} ∪ { si(~y) | ∼i ∈ {≥,=} }
∪ { si(~y) + ε | ∼i ∈ {>, 6=} }.

is a set of test points.

Problem:
We don’t know how small r(~y) has to be for case (i), and we don’t know δ(~y) for
case (ii).

Idea:
We consider the limits for r → −∞ and for ε ց 0, that is, we redefine

T := {−∞} ∪ { si(~y) | ∼i ∈ {≥,=} }
∪ { si(~y) + ε | ∼i ∈ {>, 6=} }.

How can we eliminate the infinitesimals ∞ and ε when we substitute elements of T
for x ?

12

Virtual substitution:

(x < s(~y)) {x 7→ −∞} := lim
r→−∞

(r < s(~y)) = ⊤

(x ≤ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≤ s(~y)) = ⊤

(x > s(~y)) {x 7→ −∞} := lim
r→−∞

(r > s(~y)) = ⊥

(x ≥ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≥ s(~y)) = ⊥

(x ≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r 6≈ s(~y)) = ⊤

(x < s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε < s(~y)) = (u < s(~y))

(x ≤ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε ≤ s(~y)) = (u < s(~y))

(x > s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε > s(~y)) = (u ≥ s(~y))

(x ≥ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε ≥ s(~y)) = (u ≥ s(~y))

(x ≈ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε ≈ s(~y)) = ⊥

(x 6≈ s(~y)) {x 7→ u+ ε} := lim
εց0

(u+ ε 6≈ s(~y)) = ⊤

We have traversed the real axis from −∞ to +∞. Alternatively, we can traverse it from
+∞ to −∞. In this case, the test points are

T ′ := {+∞} ∪ { si(~y) | ∼i ∈ {≤,=} }
∪ { si(~y)− ε | ∼i ∈ {<, 6=} }.

Infinitesimals are eliminated in a similar way as before.

In practice: Compute both T and T ′ and take the smaller set.

For a universally quantified formulas ∀xF , we replace it by ¬∃x¬F , push inner negation
downwards, and then continue as before.

Note that there is no CNF/DNF transformation required. Loos-Weispfenning quantifier
elimination works on arbitrary positive formulas.

13

Loos-Weispfenning: Complexity

One LW-step for ∃ or ∀:

as the number of test points is at most one plus the number of atoms (one plus half
of the number of atoms, if there are only ordering literals), the formula size grows
quadratically; therefore O(n2) runtime.

Multiple quantifiers of the same kind:

∃x2 ∃x1. F (x1, x2, ~y)

❀ ∃x2.
(∨

t1∈T1
F (x1, x2, ~y) {x1 7→ t1}

)

❀

∨

t1∈T1
(∃x2. F (x1, x2, ~y) {x1 7→ t1})

❀

∨

t1∈T1

∨

t2∈T2
(F (x1, x2, ~y) {x1 7→ t1} {x2 7→ t2})

m quantifiers ∃ . . .∃ or ∀ . . .∀:

formula size is multiplied by n in each step, therefore O(nm+1) runtime.

m quantifiers ∃∀∃∀ . . . ∃:

doubly exponential runtime.

Note: The formula resulting from a LW-step is usually highly redundant; so an efficient
implementation must make heavy use of simplification techniques.

Literature

Andreas Dolzmann: Algorithmic Strategies for Applicable Real Qunantifier Elimination.
PhD thesis, Universität Passau, 2000.

Jean-Baptiste Joseph Fourier: Solution d’une question particulière du calcul des inégalités.
Nouveau Bulletin des Sciences par la Société philomahique de Paris, 1826.

F. Levi: Arithmetische Gesetze im Gebiete discreter Gruppen. Rendiconti del Circolo
Matematico di Palermo, 35:225–236, 1913.

Rüdiger Loos, Volker Weispfenning: Applying Linear Quantifier Elimination. The Com-
puter Journal, 36(5):450–462, 1993.

14

1.4 Existentially-quantified LRA

So far, we have considered formulas that may contain free, existentially quantified, and
universally quantified variables.

For the special case of conjunction of linear inequations in which all variables are exis-
tentially quantified, there are more efficient methods available.

Main idea: reduce satisfiability problem to optimization problem.

Linear Optimization

Goal:

Solve a linear optimization (also called: linear programming) problem for given num-
bers aij , bi, cj ∈ R:

maximize
∑

1≤j≤n cjxj

for
∧

1≤i≤m

∑

1≤j≤n aijxj ≤ bi

or in vectorial notation:

maximize ~c⊤~x

for A~x ≤ ~b

Simplex algorithm:

Developed independently by Kantorovich (1939), Dantzig (1948).

Polynomial-time average-case complexity; worst-case time complexity is exponential,
though.

Interior point methods:

First algorithm by Karmarkar (1984).

Polynomial-time worst-case complexity (but large constants).

In practice: no clear winner.

Implementations:

GLPK (GNU Linear Programming Kit),

Gurobi.

15

Main idea of Simplex:

A~x ≤ ~b describes a convex polyhedron.

Pick one vertex of the polyhedron,
then follow the edges of the polyhedron towards an optimal solution.

By convexity, the local optimum found in this way is also a global optimum.

Details: see special lecture on optimization.

Using an optimization procedure for checking satisfiability:

Goal: Check whether A~x ≤ ~b is satisfiable.

To use the Simplex method, we have to transform the original (possibly empty) poly-
hedron into another polyhedron that is non-empty and for which we know one initial
vertex.

Every real number can be written as the difference of two non-negative real numbers.
Use this idea to convert A~x ≤ ~b into an equisatisfiable inequation system ~y ≥ ~0,
B~y ≤ ~b for new variables ~y.

Multiply those inequations of the inequation system B~y ≤ ~b in which the number on
the right-hand side is negative by −1. We obtain two inequation systems D1~y ≤ ~g1,
D2~y ≥ ~g2, such that ~g1 ≥ ~0, ~g2 > 0.

Now solve

maximize ~1⊤(D2~y − ~z)

for ~y, ~z ≥ ~0
D1~y ≤ ~g1
D2~y − ~z ≤ ~g2

where ~z is a vector of new variables with the same size as ~g2.

Observation 1: ~0 is a vertex of the polyhedron of this optimization problem.

Observation 2: The maximum is ~1⊤~g2 if and only if ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has a
solution.

(⇒): If ~1⊤(D2~y − ~z) = ~1⊤~g2 for some ~y, ~z satisfying D2~y− ~z ≤ ~g2, then D2~y − ~z = ~g2,
hence D2~y = ~g2 + ~z ≥ ~g2.

(⇐): ~1⊤(D2~y − ~z) can never be larger than ~1⊤~g2. If ~y ≥ ~0, D1~y ≤ ~g1, D2~y ≥ ~g2 has
a solution, choose ~z = D2~y − ~g2; then ~1⊤(D2~y − ~z) = ~1⊤~g2.

16

