Automated Reasoning, 2023/2024 Endterm Exam, Sample Solution

Assignment 1

We have to show that N has a model whenever $N \setminus N_0 \setminus N_1$ has a model, and vice versa.

Since $N \setminus N_0 \setminus N_1$ is a subset of N, every model of N is obviously a model of $N \setminus N_0 \setminus N_1$.

For the reverse direction assume that the Σ algebra \mathcal{A} is a model of $N \setminus N_0 \setminus N_1$. We define a Σ -algebra \mathcal{B} that has the same universe as \mathcal{A} and that agrees with \mathcal{A} for all function and predicate symbols except for P/1.

If $Q_{\mathcal{A}} = 1$, we define $P_{\mathcal{B}} = \emptyset$. Since the predicate symbol P does not occur in $N \setminus N_0 \setminus N_1$, \mathcal{B} agrees with \mathcal{A} for all the symbols that occur in these clauses, therefore $\mathcal{B} \models N \setminus N_0 \setminus N_1$. Since all clauses in N_0 contain at least one negated literal $\neg P(t)$ and since $P_{\mathcal{B}}$ is false for every argument, $\mathcal{B} \models N_0$. Finally, all clauses in $N_1 \setminus N_0$ contain the positive literal Q, and since $Q_{\mathcal{B}} = Q_{\mathcal{A}} = 1$, we get $\mathcal{B} \models N_1 \setminus N_0$. Since $N = (N \setminus N_0 \setminus N_1) \cup N_0 \cup (N_1 \setminus N_0)$, we conclude that $\mathcal{B} \models N$.

Otherwise $Q_{\mathcal{A}} = 0$, then we define $P_{\mathcal{B}} = U_{\mathcal{B}}$. Again, for all the symbols that occur in clauses in $N \setminus N_0 \setminus N_1$, \mathcal{B} agrees with \mathcal{A} , therefore $\mathcal{B} \models$ $N \setminus N_0 \setminus N_1$. Since all clauses in N_1 contain at least one positive literal P(t) and since $P_{\mathcal{B}}$ is true for every argument, $\mathcal{B} \models N_1$. Finally, all clauses in $N_0 \setminus N_1$ contain the negated literal $\neg Q$, and since $Q_{\mathcal{B}} = Q_{\mathcal{A}} = 0$, we get $\mathcal{B} \models N_1 \setminus$ N_0 . Since $N = (N \setminus N_0 \setminus N_1) \cup N_1 \cup (N_0 \setminus N_1)$, we conclude again that $\mathcal{B} \models N$.

Grading scheme: 10 points for the "if" part, 2 points for the "only if" part.

Assignment 2

In the example formula, the quantifier $\exists z$ cannot be pushed inside, since the variable z occurs in both parts of the conjunction. The variable x occurs in only one part of the conjunction, but the application of the first miniscoping rule is blocked by the quantifiers $\exists y$ and $\exists z$. Changing the order of several existential quantifiers in front of a subformula, however, yields

an equivalent formula. Therefore, the obvious solution is to add a transformation rule that swaps two existential quantifiers in a row, say,

$$H[\exists x \, \exists y \, F]_p \Rightarrow_{\mathrm{MS}} H[\exists y \, \exists x \, F]_p$$

After applying this rule twice, the quantifier $\exists x$ appears directly before the conjunction, so that now the first miniscoping rule can be applied.

This transformation rule has the drawback, however, that the relation \Rightarrow_{MS} is no longer terminating. A better approach is to combine the swapping rule and the original miniscoping rule into a single rule, say

$$H[\exists x \exists y_1 \dots \exists y_n (F \land G)]_p$$

$$\Rightarrow_{MS} H[\exists y_1 \dots \exists y_n ((\exists x F) \land G)]_p$$

Assignment 3

Part (a) In (1), P(c, x) and R(g(x), x) are not maximal since $P(f(x), x) \succ P(c, x)$ and $P(f(x), x) \succ R(g(x), x)$. In (3), Q(z) is not maximal since $\neg P(z, h(y)) \succ Q(z)$. In (4), $\neg R(g(x), x)$ is not maximal since $Q(x) \succ$ $\neg R(g(x), x)$. The remaining literals are maximal in their clauses: (1)1, (2)1, (3)1, (3)2, (4)1, (4)2, (5)1. This yields the following three inferences:

Res. (1)1, (3)1: mgu:
$$\{x \mapsto c, y \mapsto f(c)\}$$

 $P(c,c) \lor R(g(c),c) \lor$
 $\neg P(z,h(f(c))) \lor Q(z)$

Res. (1)1, (3)2: mgu: $\{x \mapsto h(y), z \mapsto f(h(y))\}$ $P(c, h(y)) \lor R(g(h(y)), h(y)) \lor$ $\neg P(y, c) \lor Q(f(h(y)))$

Fact. (4)1, (4)2: mgu: $\{x \mapsto b\}$ $Q(b) \lor \neg R(g(b), b)$

Grading scheme: 2 points for every required inference, 2 points for computing its conclusion correctly; -2 for every unnecessary inference.

Part (b) The conclusion of the first inference above contains the subclause R(g(c), c), which is an instance of clause (5). Therefore, every ground instance of the conclusion follows from a smaller ground instance of (5). Hence the conclusion is redundant.

Assignment 4

Part (a) $f(d) \leftarrow_E f(f(c)) \rightarrow_E f(c) \rightarrow_E d$.

Part (b) The universe of $T_{\Sigma}(\emptyset)/E$ consists of the congruence classes of $T_{\Sigma}(\emptyset)$ w.r.t. \leftrightarrow_{E}^{*} . Since every ground term except b and c can be rewritten to d using E, there are three such congruence classes, namely $[b] = \{b\}, [c] = \{c\},$ and $[d] = T_{\Sigma}(\emptyset) \setminus \{b, c\}.$

Part (c) By Birkhoff's Theorem, an equation $\forall \vec{x}(s \approx t)$ holds in $T_{\Sigma}(X)/E$ if and only if $s \leftrightarrow_E^* t$. Therefore, (2) holds in $T_{\Sigma}(X)/E$, and (1) and (3) do not hold. (It is not possible to rewrite f(b) to b or f(x) to f(y) using \leftrightarrow_E .)

For $\mathcal{T} = \mathrm{T}_{\Sigma}(\emptyset)/E$, we observe that for every assignment β , $\mathcal{T}(\beta)(f(b)) = [d]$ and $\mathcal{T}(\beta)(b) =$ [b], therefore (1) does not hold in $\mathrm{T}_{\Sigma}(\emptyset)/E$. On the other hand, for every assignment β , we have $\mathcal{T}(\beta)(f(f(f(y)))) = \mathcal{T}(\beta)(f(f(y))) = [d]$ and $\mathcal{T}(\beta)(f(y)) = \mathcal{T}(\beta)(f(x)) = [d]$, therefore both (2) and (3) hold in $\mathrm{T}_{\Sigma}(\emptyset)/E$.

Grading scheme: 1 point for each correct answer with a reasonable explanation.

Assignment 5

Part (a) Assume that $s \to_R t$ using some rewrite rule $l \to r$ in R. Then $s = s[l\sigma]_p$ and $t = s[r\sigma]_p$. Since $\operatorname{var}(r) \subseteq \operatorname{var}(l)$, we obtain

$$\operatorname{var}(t) = \operatorname{var}(s[r\sigma]_p) \subseteq \operatorname{var}(s) \cup \operatorname{var}(r\sigma)$$
$$= \operatorname{var}(s) \cup \bigcup_{x \in \operatorname{var}(r)} \operatorname{var}(x\sigma)$$
$$\subseteq \operatorname{var}(s) \cup \bigcup_{x \in \operatorname{var}(l)} \operatorname{var}(x\sigma)$$
$$= \operatorname{var}(s) \cup \operatorname{var}(l\sigma) = \operatorname{var}(s).$$

Part (b) First note that $s \to_R^* t$ implies $\operatorname{var}(s) \supseteq \operatorname{var}(t)$; this follows from part (a) by an obvious induction over the length of the rewrite derivation.

Assume that $x \in X$ is a variable, $s \in T_{\Sigma}(X)$ is a term such that $x \notin var(s)$, $R \models x \approx s$, and R is confluent. By Birkhoff's Theorem, $R \models x \approx s$ is equivalent to $x \leftrightarrow_R^* s$. Since confluence is equivalent to the Church-Rosser property, this implies that there exists a term t such that $x \to_R^* t$ and $s \to_R^* t$. Now note that the left-hand side of a rewrite rule cannot be a variable; therefore a variable x cannot be rewritten to any other term using \to_R . Consequently, x = t. But then $s \to_R^* x$, which implies that $\operatorname{var}(s) \supseteq \operatorname{var}(x) = \{x\}$, contradicting the assumption that $x \notin \operatorname{var}(s)$.

Assignment 6

Part (a) The set of defined symbols is $D = \{f, g, h\}$, therefore R has six dependency pairs:

$$f^{\sharp}(p(x)) \to h^{\sharp}(q(x)) \qquad (1a)$$

$$g^{\sharp}(p(x)) \to h^{\sharp}(f(x)) \qquad (4a)$$

$$g^{\sharp}(p(x)) \to f^{\sharp}(x)$$
 (4b)

$$g^{\sharp}(q(g(x))) \to g^{\sharp}(b)$$
 (5a)

$$h^{\sharp}(p(x)) \to g^{\sharp}(c)$$
 (6a)

$$h^{\sharp}(q(q(x))) \to g^{\sharp}(q(x))$$
 (7a)

Note that there is no dependency pair $f^{\sharp}(f(x)) \to f^{\sharp}(x)$ derived from (3), since f(x) is a proper subterm of the left-hand side of (3).

Grading scheme: -1 point for each missing or wrong dependency pair.

Part (b) The approximated dependency graph for R is

$$(4a) \longrightarrow (6a)$$

$$(4b) \longrightarrow (1a) \longrightarrow (7a) \longrightarrow (5a)$$

As the graph is acyclic, R is terminating.

Grading scheme: 5 points for the dependency graph, -1 point for each missing or incorrect edge, 1 point for showing termination.

Part (c) The exact dependency graph for R contains an edge from a dependency pair $s \to t$ to a dependency pair $u \to v$ if $t\sigma \to_R^* u\tau$ for some instances $t\sigma$ and $u\tau$. For the dependency pairs (4a) and (7a), this condition is not satisfied. Note that rewriting an instance $(h^{\sharp}(f(x)))\sigma$ using any number of R-steps results either in a term $h^{\sharp}(f(\ldots))$ or a term $h^{\sharp}(p(\ldots))$. It is impossible to obtain a term of the form $h^{\sharp}(q(q(\ldots)))$, that is, an instance of $h^{\sharp}(q(q(x)))$. Therefore the exact dependency graph has no edge from (4a) to (7a).

Grading scheme: 3 points for determining the correct edge and giving a reasonable explanation.