## Automated Reasoning, 2023/2024 Endterm Exam, Sample Solution

## Assignment 1

We have to show that $N$ has a model whenever $N \backslash N_{0} \backslash N_{1}$ has a model, and vice versa.

Since $N \backslash N_{0} \backslash N_{1}$ is a subset of $N$, every model of $N$ is obviously a model of $N \backslash N_{0} \backslash N_{1}$.

For the reverse direction assume that the $\Sigma$ algebra $\mathcal{A}$ is a model of $N \backslash N_{0} \backslash N_{1}$. We define a $\Sigma$-algebra $\mathcal{B}$ that has the same universe as $\mathcal{A}$ and that agrees with $\mathcal{A}$ for all function and predicate symbols except for $P / 1$.

If $Q_{\mathcal{A}}=1$, we define $P_{\mathcal{B}}=\emptyset$. Since the predicate symbol $P$ does not occur in $N \backslash N_{0} \backslash N_{1}$, $\mathcal{B}$ agrees with $\mathcal{A}$ for all the symbols that occur in these clauses, therefore $\mathcal{B} \models N \backslash N_{0} \backslash N_{1}$. Since all clauses in $N_{0}$ contain at least one negated literal $\neg P(t)$ and since $P_{\mathcal{B}}$ is false for every argument, $\mathcal{B} \models N_{0}$. Finally, all clauses in $N_{1} \backslash N_{0}$ contain the positive literal $Q$, and since $Q_{\mathcal{B}}=Q_{\mathcal{A}}=1$, we get $\mathcal{B} \models N_{1} \backslash N_{0}$. Since $N=\left(N \backslash N_{0} \backslash N_{1}\right) \cup N_{0} \cup\left(N_{1} \backslash N_{0}\right)$, we conclude that $\mathcal{B} \models N$.

Otherwise $Q_{\mathcal{A}}=0$, then we define $P_{\mathcal{B}}=U_{\mathcal{B}}$. Again, for all the symbols that occur in clauses in $N \backslash N_{0} \backslash N_{1}, \mathcal{B}$ agrees with $\mathcal{A}$, therefore $\mathcal{B} \models$ $N \backslash N_{0} \backslash N_{1}$. Since all clauses in $N_{1}$ contain at least one positive literal $P(t)$ and since $P_{\mathcal{B}}$ is true for every argument, $\mathcal{B} \models N_{1}$. Finally, all clauses in $N_{0} \backslash N_{1}$ contain the negated literal $\neg Q$, and since $Q_{\mathcal{B}}=Q_{\mathcal{A}}=0$, we get $\mathcal{B} \models N_{1} \backslash$ $N_{0}$. Since $N=\left(N \backslash N_{0} \backslash N_{1}\right) \cup N_{1} \cup\left(N_{0} \backslash N_{1}\right)$, we conclude again that $\mathcal{B} \models N$.

Grading scheme: 10 points for the "if" part, 2 points for the "only if" part.

## Assignment 2

In the example formula, the quantifier $\exists z$ cannot be pushed inside, since the variable $z$ occurs in both parts of the conjunction. The variable $x$ occurs in only one part of the conjunction, but the application of the first miniscoping rule is blocked by the quantifiers $\exists y$ and $\exists z$. Changing the order of several existential quantifiers in front of a subformula, however, yields
an equivalent formula. Therefore, the obvious solution is to add a transformation rule that swaps two existential quantifiers in a row, say,

$$
H[\exists x \exists y F]_{p} \Rightarrow_{\mathrm{MS}} H[\exists y \exists x F]_{p}
$$

After applying this rule twice, the quantifier $\exists x$ appears directly before the conjunction, so that now the first miniscoping rule can be applied.

This transformation rule has the drawback, however, that the relation $\Rightarrow_{\mathrm{MS}}$ is no longer terminating. A better approach is to combine the swapping rule and the original miniscoping rule into a single rule, say

$$
\begin{aligned}
& H\left[\exists x \exists y_{1} \ldots \exists y_{n}(F \wedge G)\right]_{p} \\
& \quad \Rightarrow_{\mathrm{MS}} H\left[\exists y_{1} \ldots \exists y_{n}((\exists x F) \wedge G)\right]_{p}
\end{aligned}
$$

## Assignment 3

Part (a) In (1), $P(c, x)$ and $R(g(x), x)$ are not maximal since $P(f(x), x) \succ P(c, x)$ and $P(f(x), x) \succ R(g(x), x)$. In (3), $Q(z)$ is not maximal since $\neg P(z, h(y)) \succ Q(z)$. In (4), $\neg R(g(x), x)$ is not maximal since $Q(x) \succ$ $\neg R(g(x), x)$. The remaining literals are maximal in their clauses: $(1) 1,(2) 1,(3) 1,(3) 2,(4) 1$, $(4) 2,(5) 1$. This yields the following three inferences:

Res. (1)1, (3)1: mgu: $\{x \mapsto c, y \mapsto f(c)\}$

$$
\begin{aligned}
& P(c, c) \vee R(g(c), c) \vee \\
& \neg P(z, h(f(c))) \vee Q(z)
\end{aligned}
$$

Res. (1)1, (3)2: mgu: $\{x \mapsto h(y), z \mapsto f(h(y))\}$

$$
\begin{aligned}
& P(c, h(y)) \vee R(g(h(y)), h(y)) \vee \\
& \neg P(y, c) \vee Q(f(h(y)))
\end{aligned}
$$

Fact. (4)1, (4)2: mgu: $\{x \mapsto b\}$

$$
Q(b) \vee \neg R(g(b), b)
$$

Grading scheme: 2 points for every required inference, 2 points for computing its conclusion correctly; -2 for every unnecessary inference.

Part (b) The conclusion of the first inference above contains the subclause $R(g(c), c)$, which is an instance of clause (5). Therefore, every ground instance of the conclusion follows from a smaller ground instance of (5). Hence the conclusion is redundant.

## Assignment 4

Part (a) $f(d) \leftarrow_{E} f(f(c)) \rightarrow_{E} f(c) \rightarrow_{E} d$.
Part (b) The universe of $\mathrm{T}_{\Sigma}(\emptyset) / E$ consists of the congruence classes of $\mathrm{T}_{\Sigma}(\emptyset)$ w.r.t. $\leftrightarrow_{E}^{*}$. Since every ground term except $b$ and $c$ can be rewritten to $d$ using $E$, there are three such congruence classes, namely $[b]=\{b\},[c]=\{c\}$, and $[d]=\mathrm{T}_{\Sigma}(\emptyset) \backslash\{b, c\}$.

Part (c) By Birkhoff's Theorem, an equation $\forall \vec{x}(s \approx t)$ holds in $\mathrm{T}_{\Sigma}(X) / E$ if and only if $s \leftrightarrow_{E}^{*} t$. Therefore, (2) holds in $\mathrm{T}_{\Sigma}(X) / E$, and (1) and (3) do not hold. (It is not possible to rewrite $f(b)$ to $b$ or $f(x)$ to $f(y)$ using $\leftrightarrow_{E}$.)
For $\mathcal{T}=\mathrm{T}_{\Sigma}(\emptyset) / E$, we observe that for every assignment $\beta, \mathcal{T}(\beta)(f(b))=[d]$ and $\mathcal{T}(\beta)(b)=$ $[b]$, therefore (1) does not hold in $\mathrm{T}_{\Sigma}(\emptyset) / E$. On the other hand, for every assignment $\beta$, we have $\mathcal{T}(\beta)(f(f(f(y))))=\mathcal{T}(\beta)(f(f(y)))=[d]$ and $\mathcal{T}(\beta)(f(y))=\mathcal{T}(\beta)(f(x))=[d]$, therefore both (2) and (3) hold in $\mathrm{T}_{\Sigma}(\emptyset) / E$.

Grading scheme: 1 point for each correct answer with a reasonable explanation.

## Assignment 5

Part (a) Assume that $s \rightarrow_{R} t$ using some rewrite rule $l \rightarrow r$ in $R$. Then $s=s[l \sigma]_{p}$ and $t=s[r \sigma]_{p}$. Since $\operatorname{var}(r) \subseteq \operatorname{var}(l)$, we obtain

$$
\begin{aligned}
\operatorname{var}(t)=\operatorname{var} & \left(s[r \sigma]_{p}\right) \subseteq \operatorname{var}(s) \cup \operatorname{var}(r \sigma) \\
& =\operatorname{var}(s) \cup \bigcup_{x \in \operatorname{var}(r)} \operatorname{var}(x \sigma) \\
& \subseteq \operatorname{var}(s) \cup \bigcup_{x \in \operatorname{var}(l)} \operatorname{var}(x \sigma) \\
& =\operatorname{var}(s) \cup \operatorname{var}(l \sigma)=\operatorname{var}(s) .
\end{aligned}
$$

Part (b) First note that $s \rightarrow_{R}^{*} t$ implies $\operatorname{var}(s) \supseteq \operatorname{var}(t)$; this follows from part (a) by an obvious induction over the length of the rewrite derivation.
Assume that $x \in X$ is a variable, $s \in \mathrm{~T}_{\Sigma}(X)$ is a term such that $x \notin \operatorname{var}(s), R \models x \approx s$, and $R$ is confluent. By Birkhoff's Theorem, $R \models x \approx s$ is equivalent to $x \leftrightarrow_{R}^{*} s$. Since confluence is equivalent to the Church-Rosser property, this implies that there exists a term $t$ such that $x \rightarrow_{R}^{*} t$ and $s \rightarrow_{R}^{*} t$. Now note that the left-hand side of a rewrite rule cannot be a variable; therefore a variable $x$ cannot be rewritten to any other term using $\rightarrow_{R}$. Conse-
quently, $x=t$. But then $s \rightarrow_{R}^{*} x$, which implies that $\operatorname{var}(s) \supseteq \operatorname{var}(x)=\{x\}$, contradicting the assumption that $x \notin \operatorname{var}(s)$.

## Assignment 6

Part (a) The set of defined symbols is $D=$ $\{f, g, h\}$, therefore $R$ has six dependency pairs:

$$
\begin{align*}
f^{\sharp}(p(x)) & \rightarrow h^{\sharp}(q(x))  \tag{1a}\\
g^{\sharp}(p(x)) & \rightarrow h^{\sharp}(f(x))  \tag{4a}\\
g^{\sharp}(p(x)) & \rightarrow f^{\sharp}(x)  \tag{4b}\\
g^{\sharp}(q(g(x))) & \rightarrow g^{\sharp}(b)  \tag{5a}\\
h^{\sharp}(p(x)) & \rightarrow g^{\sharp}(c)  \tag{6a}\\
h^{\sharp}(q(q(x))) & \rightarrow g^{\sharp}(q(x)) \tag{7a}
\end{align*}
$$

Note that there is no dependency pair $f^{\sharp}(f(x)) \rightarrow f^{\sharp}(x)$ derived from (3), since $f(x)$ is a proper subterm of the left-hand side of (3).
Grading scheme: -1 point for each missing or wrong dependency pair.

Part (b) The approximated dependency graph for $R$ is
(4a)
(6a)
(4b)


As the graph is acyclic, $R$ is terminating.
Grading scheme: 5 points for the dependency graph, -1 point for each missing or incorrect edge, 1 point for showing termination.

Part (c) The exact dependency graph for $R$ contains an edge from a dependency pair $s \rightarrow t$ to a dependency pair $u \rightarrow v$ if $t \sigma \rightarrow_{R}^{*} u \tau$ for some instances $t \sigma$ and $u \tau$. For the dependency pairs (4a) and (7a), this condition is not satisfied. Note that rewriting an instance $\left(h^{\sharp}(f(x))\right) \sigma$ using any number of $R$-steps results either in a term $h^{\sharp}(f(\ldots))$ or a term $h^{\sharp}(p(\ldots))$. It is impossible to obtain a term of the form $h^{\sharp}(q(q(\ldots)))$, that is, an instance of $h^{\sharp}(q(q(x)))$. Therefore the exact dependency graph has no edge from (4a) to (7a).
Grading scheme: 3 points for determining the correct edge and giving a reasonable explanation.

