
Automated Reasoning, 2023/2024
Midterm Exam, Sample Solution

Assignment 1

With a reasonable strategy and the given literal
selection rule, the CDCL procedure yields

¬P d ¬Q ¬Rd ¬Sd T U V ‖ N

(3) (7) (8) (9)

At this point, clause (10) is a conflict clause.
By resolving (10) with (9), we obtain ¬T ∨ ¬U
(which is not a backjump clause), by resolving
this clause with (8), we obtain P ∨ ¬T (11),
which is a backjump clause. Using this back-
jump clause, we remove the last five literals
from the trail and add ¬T (11). We continue und
obtain

¬P d ¬Q ¬T S ¬R ‖ N ∪ {(11)}
(3) (11) (7) (5)

At this point, clause (6) is a conflict clause.
By resolving (6) with (5), we obtain ¬S ∨ T

(which is not a backjump clause), by resolving
this clause with (7), we obtain T (12), which is
a backjump clause. Using this backjump clause,
we remove all literals from the trail and add
T (12). We continue und obtain

T V ¬U P ¬Qd ¬Rd ¬Sd ‖ N ∪
(12) (9) (10) (8) {(11), (12)}

Since all literals are defined and all clauses inN

are true, this is a final state, so by Thm. 2.19,
the literals on the trail are a model of N .

Grading scheme: −2 points per error (−1 point,
if the decision literal selection strategy was ig-
nored in the last part of the proof).

Assignment 2

Assume that rep(F ) is satisfiable. Then there
exists a valuation A such that A(rep(F )) = 1.
We have to show that there exists a valua-
tion A′ such that A′(F ) = 1. Define A′ by
A′(Q) = A(R) and A′(P ) = A(P ) for every
propositional variable P ∈ Π \ {Q}.

We show by induction over the formula
structure that A′(G) = A(rep(G)) for every
Π-formula G.

Case 1: G is a propositional variable. If
G = Q, then rep(Q) = R. Therefore A′(Q) =
A(R) = A(rep(Q)) by definition of A′(Q).
Otherwise G = P for some P ∈ Π \ {Q},
then rep(P ) = P . Therefore A′(P ) = A(P ) =
A(rep(P )) by definition of A′(P ).

Case 2: G is a conjunctive formula
G1 ∨ G2. We use the induction hypothe-
sis for G1 and G2 and obtain A′(G) =
A′(G1 ∨ G2) = min(A′(G1),A

′(G2)) =
min(A(rep(G1)),A(rep(G2))) = A(rep(G1) ∧
rep(G2)) = A(rep(G1 ∧G2)).

Case 3: G is a negation ¬G1. We use the in-
duction hypothesis for G1 and obtain A′(G) =
A′(¬G1) = 1 − A′(G1) = 1 − A(rep(G1)) =
A(¬rep(G1)) = A(rep(¬G1)).

The remaining cases are handled analo-
gously.

Since A(rep(F )) = 1 by assumption and
A′(G) = A(rep(G)) for every Π-formula G, we
obtain A′(F ) = 1, so F is satisfiable.

Assignment 3

Part (a) By assumption, H[F ]p is a valid for-
mula. Therefore it is a satisfiable formula. By
Prop. 2.12, it follows that H[Q]p ∧ (Q ↔ F ) is
satisfiable as well.

Part (b) Since Q does not occur in F , it
is possible to define a valuation A such that
A(Q) 6= A(F ). Therefore A(Q ↔ F ) = 0.
Since A is not a model of H[Q]p ∧ (Q ↔ F ),
the formula H[Q]p ∧ (Q ↔ F ) is not valid.

Grading scheme: 6 points for a correct answer
with a correct explanation; typically no points
otherwise.
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Assignment 4

Let F be the propositional formula

((P ↔ ¬Q) ∧R) → (¬P ∧Q).

Since there are no trivial subformulas to be
eliminated in Step 1 of the algorithm, we start
with the introduction of a fresh variable S for
P ↔ ¬Q in Step 2. This subformula occurs in
F at a position with negative polarity, there-
fore we obtain

((S ∧R) → (¬P ∧Q)) ∧ ((P ↔ ¬Q) → S).

The equivalence occurs in the resulting formula
at a position with negative polarity, therefore
we replace it by a disjunction of conjunctions
in Step 3 of the algorithm and obtain

((S ∧R) → (¬P ∧Q))

∧ (((P ∧ ¬Q) ∨ (¬P ∧ ¬¬Q)) → S).

Elimination of implications yields

(¬(S ∧R) ∨ (¬P ∧Q))

∧ (¬((P ∧ ¬Q) ∨ (¬P ∧ ¬¬Q)) ∨ S).

After application of De Morgan’s law and elim-
ination of multiple negations, we get

(¬S ∨ ¬R ∨ (¬P ∧Q))

∧ (((¬P ∨Q) ∧ (P ∨ ¬Q)) ∨ S).

Pushing the disjunctions downward, we obtain

(¬S ∨ ¬R ∨ ¬P )

∧ (¬S ∨ ¬R ∨Q)

∧ (¬P ∨Q ∨ S)

∧ (P ∨ ¬Q ∨ S),

which is in CNF.

Grading scheme: −2 points per error (−3 points
for errors in the polarity-based Tseitin trans-
formation or the polarity-based elimination of
equivalences).

Assignment 5

(1) true: Since G is unsatisfiable, ¬G is valid.
By assumption, there exists some A such that
A(F ) = 1; since ¬G is valid, A(F ∧ ¬G) = 1.

(2) false: Let F = ⊥ and G = ⊤. The formula
⊤ is satisfiable and ⊥ |= ⊤, but ⊥ is unsatisfi-
able.
(3) true: A(F ∧G) ≤ A(F ) for every A, there-
fore A(H[F ∧G]p) ≤ A(H[F ]p) for every A by
Prop. 2.14.
(4) true: By definition, we have A(G ∨ H) =
max(A(G),A(H)), therefore A(G ∨H) = 1 if
and only if A(G) = 1 or A(H) = 1.
(5) false: Let F = P ∨Q, G = P , andH = Q,
then P ∨Q |= P ∨Q, but neither P ∨Q |= P

nor P ∨Q |= Q.
(6) true: If C ∈ N and A |= N , then A |= C

and therefore A |= C ∨D.
(7) false: Let C = ⊥, D = ⊥, and N = {P ∨
Q, ¬P ∨ ¬Q}. Then N is satisfiable, but N ∪
{⊥} is unsatisfiable.

Grading scheme: 4th, 5th, 6th, 7th correct an-
swer: 3 points each.

Assignment 6

Part (a) The only possible ordering on M is
b ≻ a ≻ c ≻ d.

Part (b) For rule (4), we need {a, a} ≻mul

{b, c}, therefore a ≻ b and a ≻ c. For rule (5),
we need {b, b} ≻mul {a, c}, therefore b ≻ a and
b ≻ c. From a ≻ b and b ≻ a, it follows that
a ≻ a, contradicting irreflexivity.

Part (c) We map every multiset S over M to
a pair of two natural numbers, where the first
one is S(a) +S(b) (that is, the sum of the num-
bers of occurrences of a and b in S), and the sec-
ond one is S(b), and compare these pairs of nat-
ural numbers lexicographically. In rule (4), the
first component decreases, in rule (5), the first
component decreases, in rule (6), the first com-
ponent remains constant and the second com-
ponent decreases, therefore the lexicographic
combination decreases for all rules (4)–(6).

Alternatively, we can map every multiset S

to the natural number 2 · S(a) + 3 · S(b). This
number also decreases for all rules (4)–(6).
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