Let N be a set of propositional clauses. Prove or refute the following statement: If N contains clauses $C_{i} \vee D_{i}(1 \leq i \leq n)$ such that $\left\{C_{i} \mid 1 \leq i \leq n\right\} \models \perp$, then $N \models \bigvee_{1 \leq i \leq n} D_{i}$.

Assignment 2 (Algebras, Herbrand Interpretations)
Decide for each of the following statements whether it is true or false:
(1) If $\Sigma=(\{b / 0, c / 0\},\{P / 1\})$, then $P(b) \vee \neg P(c)$ has exactly three Herbrand models over Σ.
(2) If $\Sigma=(\{f / 1, c / 0\},\{P / 1\})$, then $P(c) \vee P(f(c))$ has an Herbrand model over Σ whose universe has exactly four elements.
(3) If $\Sigma=(\{f / 1, c / 0\},\{P / 1\})$, then $\neg P(c) \wedge \forall x P(f(x))$ has a model whose universe has exactly five elements
(4) If $\Sigma=(\{b / 0, c / 0, d / 0\},\{P / 1\})$, then $P(b) \vee \neg P(b)$ and $P(c) \vee \neg P(d)$ are equisatisfiable.
(5) If $\Sigma=(\{f / 1, c / 0\},\{P / 1\}), N$ is a set of universally quantified Σ-clauses, and every clause in N has at least one positive literal, then N has an Herbrand model.
(6) If $\Sigma=(\{f / 1, c / 0\},\{P / 1\}), N$ is a set of universally quantified Σ-clauses, and $N \models \neg P(x) \vee P(f(x))$, then N has a model.
(7) If $\Sigma=(\{f / 1, c / 0\},\{P / 1\})$, then $\forall x P(f(x)) \vDash \forall y P(c) \vee P(f(f(y)))$.
(Note on grading: A yes/no answer is sufficient; you do not have to give an explanation. However, you need at least four correct answers to get any points for this assignment. Missing answers count like false answers.)

Assignment 3 (Lexicographic Path Ordering)
(10 points)
Let $\Sigma=(\Omega, \emptyset)$ with $\Omega=\{f / 1, g / 1, h / 2, b / 0, c / 0\}$. Find a total precedence \succ on Ω such that the lexicographic path ordering $\succ_{\text {lpo }}$ that is induced by \succ (with left-to-right status for h) satisfies the following three properties simultaneously.

$$
\begin{align*}
h(x, f(y)) & \succ_{\text {lpo }} h(g(y), y) \tag{1}\\
h(x, c) & \succ_{\text {lpo }} g(h(x, b)) \tag{2}\\
g(b) & \succ_{\text {lpo }} c \tag{3}
\end{align*}
$$

Let $\Sigma=(\Omega, \Pi)$ be a signature with $\Omega=\{f / 1, b / 0, c / 0\}$ and $\Pi=\{P / 1\}$. Suppose that the atom ordering \succ is a Knuth-Bendix ordering with weight 1 for all predicate symbols, function symbols, and variables, and with the precedence $P>f>b>c$. Let N be the set $\left\{C_{1}, C_{2}, C_{3}\right\}$.

$$
\begin{aligned}
C_{1} & =P(b) \\
C_{2} & =\neg P(f(f(c)) \\
C_{3} & =P(x) \vee P(f(x))
\end{aligned}
$$

Part (a) Sketch how the set $G_{\Sigma}(N)$ of all ground instances of clauses in N looks like. How is it ordered with respect to the clause ordering \succ_{C} ?

Part (b) Construct the candidate interpretation $I_{G_{\Sigma}(N)}^{\succ}$ of the set of all ground instances of clauses in N. Which clauses in $G_{\Sigma}(N)$ are productive and what do they produce?

Assignment 5 (Termination, Confluence)

$$
(10+6=16 \text { points })
$$

Let $\Sigma=(\Omega, \emptyset)$ be a finite signature; let $f / 1 \in \Omega$; let \succ be a simplification ordering; let R be a confluent term rewrite system contained in \succ.

Part (a) Prove: If f does not occur in any left-hand side of a rule in R, then $R \cup\{f(f(x)) \rightarrow f(x)\}$ is terminating and confluent.

Part (b) Give an example that shows that $R \cup\{f(f(x)) \rightarrow f(x)\}$ need not be confluent if f occurs in a left-hand side of a rule in R.

Assignment 6 (Knuth-Bendix Completion)

Let E be the following set of equations over $\Sigma=(\{f / 1, g / 1, h / 1\}, \emptyset)$.

$$
\begin{align*}
f(g(f(x))) & \approx h(x) \tag{1}\\
g(h(x)) & \approx x \tag{2}
\end{align*}
$$

Apply the Knuth-Bendix completion procedure to E and transform it into a finite convergent term rewrite system; use the Knuth-Bendix ordering with weight 1 for all function symbols and variables and the precedence $f>g>h$. Use a reasonable strategy.

