Let N be a set of propositional clauses. Prove or refute the following statement: If N contains clauses $C_i \vee D_i$ $(1 \le i \le n)$ such that $\{C_i \mid 1 \le i \le n\} \models \bot$, then $N \models \bigvee_{1 \le i \le n} D_i$.

Assignment 2 (Algebras, Herbrand Interpretations) (12 points)

Decide for each of the following statements whether it is true or false:

- (1) If $\Sigma = (\{b/0, c/0\}, \{P/1\})$, then $P(b) \vee \neg P(c)$ has exactly three Herbrand models over Σ .
- (2) If $\Sigma = (\{f/1, c/0\}, \{P/1\})$, then $P(c) \lor P(f(c))$ has an Herbrand model over Σ whose universe has exactly four elements.
- (3) If $\Sigma = (\{f/1, c/0\}, \{P/1\})$, then $\neg P(c) \land \forall x P(f(x))$ has a model whose universe has exactly five elements
- (4) If $\Sigma = (\{b/0, c/0, d/0\}, \{P/1\})$, then $P(b) \vee \neg P(b)$ and $P(c) \vee \neg P(d)$ are equisatisfiable.
- (5) If $\Sigma = (\{f/1, c/0\}, \{P/1\}), N$ is a set of universally quantified Σ -clauses, and every clause in N has at least one positive literal, then N has an Herbrand model.
- (6) If $\Sigma = (\{f/1, c/0\}, \{P/1\}), N$ is a set of universally quantified Σ -clauses, and $N \models \neg P(x) \lor P(f(x))$, then N has a model.

(7) If
$$\Sigma = (\{f/1, c/0\}, \{P/1\})$$
, then $\forall x P(f(x)) \models \forall y P(c) \lor P(f(f(y)))$.

(Note on grading: A yes/no answer is sufficient; you do not have to give an explanation. However, you need at least four correct answers to get any points for this assignment. Missing answers count like false answers.)

Assignment 3 (Lexicographic Path Ordering) (10 points)

Let $\Sigma = (\Omega, \emptyset)$ with $\Omega = \{f/1, g/1, h/2, b/0, c/0\}$. Find a total precedence \succ on Ω such that the lexicographic path ordering \succ_{lpo} that is induced by \succ (with left-to-right status for h) satisfies the following three properties simultaneously.

$$h(x, f(y)) \succ_{\text{lpo}} h(g(y), y) \qquad (1)$$

$$h(x,c) \succ_{\text{lpo}} g(h(x,b))$$
 (2)

$$g(b) \succ_{\text{lpo}} c$$
 (3)

Let $\Sigma = (\Omega, \Pi)$ be a signature with $\Omega = \{f/1, b/0, c/0\}$ and $\Pi = \{P/1\}$. Suppose that the atom ordering \succ is a Knuth-Bendix ordering with weight 1 for all predicate symbols, function symbols, and variables, and with the precedence P > f > b > c. Let N be the set $\{C_1, C_2, C_3\}$.

$$C_1 = P(b)$$

$$C_2 = \neg P(f(f(c)))$$

$$C_3 = P(x) \lor P(f(x))$$

Part (a) Sketch how the set $G_{\Sigma}(N)$ of all ground instances of clauses in N looks like. How is it ordered with respect to the clause ordering $\succ_{\rm C}$?

Part (b) Construct the candidate interpretation $I_{G_{\Sigma}(N)}^{\succ}$ of the set of all ground instances of clauses in N. Which clauses in $G_{\Sigma}(N)$ are productive and what do they produce?

Assignment 5 (Termination, Confluence) (10 + 6 = 16 points)

Let $\Sigma = (\Omega, \emptyset)$ be a finite signature; let $f/1 \in \Omega$; let \succ be a simplification ordering; let R be a confluent term rewrite system contained in \succ .

Part (a) Prove: If f does not occur in any left-hand side of a rule in R, then $R \cup \{f(f(x)) \to f(x)\}$ is terminating and confluent.

Part (b) Give an example that shows that $R \cup \{f(f(x)) \to f(x)\}$ need not be confluent if f occurs in a left-hand side of a rule in R.

Assignment 6 (Knuth-Bendix Completion) (16 points)

Let E be the following set of equations over $\Sigma = (\{f/1, g/1, h/1\}, \emptyset).$

$$f(g(f(x))) \approx h(x) \qquad (1)$$
$$g(h(x)) \approx x \qquad (2)$$

Apply the Knuth-Bendix completion procedure to E and transform it into a finite convergent term rewrite system; use the Knuth-Bendix ordering with weight 1 for all function symbols and variables and the precedence f > g > h. Use a reasonable strategy.