Automated Reasoning I, 2015
Final Exam, Sample Solution

Assignment 1

We first define for every X-algebra A an algebra
A" by Uy = Uy, far = fa for every f/n € Q,
and Py = U} \ P4 for every P/m € IL

In the next step we prove the lemma that
A(B)(neg(F)) = A'(B)(F) for every formula F
and every assignment (3.

We use induction over the structure of for-
mulas. Clearly A(8)(neg(L)) = A(B)(L) =
0=A'(B)(L) and A(B)(neg(T)) = A(B)(T) =
1= A(B)(T).

Since all function symbols are interpreted
in the same way in the algebras A and
A, we get A(B)(t) = A(B)(t) for every
term t; therefore A(B)(neg(P(t1,...,tm))) =
AB)(=P(ty, .. tm)) = 1 (A(B) (1), -
AB)(tm)) ¢ Pa il (A(B)(t1), ... A(B)(tm))
€ Py ift A(B)(P(t1,...,tm)) = 1.

By structural induction we now obtain
A(B)(neg(F A G)) = A(B)(neg(F) A neg(G))
= min{A()(neg(F)), A(ﬁ)(neg(G))}
min{A"(8)(F), A(B)(G)} = AB)EF A
and A(S )(neg(ﬂF)) = A(B)(=(neg(F)))
1— A(B)(neg(F)) =1 - A'(B)(F) = A(B) (=
and A(B)(neg(Iz F)) = A(B)(Fz (neg(F)
= maxeey, {A(Blz — a])(neg(F))}
maxacy , {A'(B[z = a])(F)} = A(B)(Fz F).

Using the lemma, we now see that if F
is valid, then for every A and [ we get
A(B)(neg(F)) = A'(B)(F) = 1, which implies
that neg(F) is valid as well.
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Note:

— The subformulas of valid (or unsatisfiable)
formulas are in general neither valid nor un-
satisfiable. E.g., (3z P(z)) V (Vy —P(y)) is
valid, and (3z P(z)) A (Yy —P(y)) is unsat-
isfiable, but (3= P(z)) and (Vy—P(y)) are
neither valid nor unsatisfiable. For this rea-
son, using some lemma is unavoidable. Any
attempt to prove properties of valid (or un-
satisfiable, or satisfiable) formulas directly
by induction must fail, since the induction
hypothesis is not applicable to the subfor-
mulas.

Assignment 2

Part (a) In (1), P(b,z) and R(f(z),x) are
not maximal since P(g(x),z) > P(b,z) and
P(g(z),z) = R(f(x),x). In (3), =R(y, z) is not
maximal since = P(z, h(y)) = —R(y,z). In (4),
Q(z) is not maximal since = P(z,b) > Q(2). In
(5), "R(f(z),z) is not maximal since Q(x) >
—R(f(z),z). The remaining literals are max-
imal in their clauses: (1)1; (2)1; (3)1; (4)1,
(4)2, (4)4; (5)1, (5)2. This yields the following
inferences:

Res. (1)1, (3)1: mgu: {x — h(y), z — g(h(y))}
P(b,h(y)) vV R(f(h(y)), h(y)) V
—R(y, 9(h(y)))

Res. (1)1, (4)1: mgu: {z +— ¢, y — g(c)}
P(b,c) V R(f(c),c) V
~P(2,0) V=Q(2) V R(z,9(c))

Res. (1)1, (4)2: mgu: {z — b, z+— g(b)}
P(b,b) V R(f(b),b) v
=P(y,¢) vV -Q(g(b)) v

Fact. (5)1, (5)2: mgu: {x — b}
Q(b) vV —R(f(b),b)

R(g(b),y)

Part  (b) Resolution inferences  with
P(g(z),z) in (1) can only be prevented by
selecting the negative literals ~R(y,z) in (3)
and —Q(z) in (4). By selecting —Q(z) in (4),
a resolution inference between (4) and (5)
becomes possible; to avoid this resolution in-
ference and the ordered factorization inference
with (5), the negative literal =R(f(x),z) must
be selected in (5).

Assignment 3

(1) true: [c] = {c,d}.

(2) false: f(y,c) <> b <g f(c,c) implies
fyse) € [f(e o).
(3) true: the universe of 7 = Tx(X)/E is

the set of all E-congruence classes of terms in
Tx(X), so it includes [z].

(4) false: an FE-congruence class contains all
terms in Tx;(X) that are E-equal to each other,
so the E-congruence class of b and f(z,c) con-

tains, e.g., f(c,c) and f(f(y,y),c) as well.



Ef)z tr;e fle,b) <> f(d,b) implies f(c,b) €
f(d

(6) true: f(y,d) < f(y,c) < b+ f(z,0)
implies fr([yl, [d]) = [f(y,d)] = [f(2,0)].

(7) true: T(B)(y) = [ = [d] = T(B)(d), so
TB)y~d) =1.

(8) false: for the modified assignment v =
Blz = [b]], T(7)(2) = [b] # [c] =T (7)(c).

Assignment 4

Since every application of a rule in R reduces
the size of the term by 1, the rewrite system
R is obviously terminating. It has no criti-
cal pairs, so it is locally confluent and, by ter-
mination, confluent. By Birkhoff’s Theorem,
R EVZ (s = t) if and only if s <35 ¢t. As R is
confluent, s <+% t if and only if s =5 u <35 ¢
for some u. Since every R-rewrite step reduces
the size of the term by 1, the derivation s =% u
can consist of at most |s| — 1 steps and the
derivation u <7, ¢ can consist of at most [t| — 1
steps; so we get a derivation s <3 ¢ with at
most (|s| — 1) + (|t| — 1) rewrite steps.

Assignment 5

The relation =4, is not stable under substi-
tutions. For instance s = f(x,9(9(y))) *do
flg(x),g(y)) = t since depth(s) = 3 and
depth(t) = 2, but if o= {z— h(h(z))},
then we get so = f(h(h(2)),9(9(¥))) a0
f(g(h(h(2))),9(y)) = to since depth(so) = 3
and depth(to) = 4.

Assignment 6

Part (a) The set of defined symbols is D =
{f,g,h}, therefore R has four dependency
pairs:

Fi(x, h(@)) — W (k()) (6)
fih(@),y) = ¢ (2, 9(h(z),2))  (T)
Fi(h(z),y) — g*(h(z), ) (®)

g (z,2) = fH(z,z) (9)

Note:

— There is no dependency pair f#(h(z),y) —
R¥(z) derived from (2), since h(z) is a proper
subterm of the left-hand side of (2).

Part (b) The approximated dependency
graph for R is

The only SCC has the node set {(7),(8),(9)}.
We use a simple projection 7 with 7(ff) = 1
and m(¢*) = 1. For (7), n(f*(h(z),y)) =
h(ﬂ?) > x = w(gf(x,g(h(x),x))), for (8),
m(fA(h(x ) y)) = h(z) = 7(g* (h(x),z)), and for
9), 7(g*(x,2)) = = 7(f(x,z)). So we can
delete node (7) from the dependency graph and
obtain

(6) 9) (8)

Now the only SCC has the node set {(8),(9)}.
We use a simple projection 7 with 7(ff) = 1
and n(gh) = 2. For (8), n(f*(h(z),y)) =
h(z) > x = n(g*(h(z),x)) and for (9),
7(g*(z,x)) = = = w(f*(x,2)). Therefore, we
can now delete (8) from the dependency graph
and obtain

~—

(6) —— (9)

Since there are no more SCCs left, the TRS R
is terminating.

Note:

— An SCC is a mazimal subgraph in which
there is a non-empty path from every node
to every node. The subgraphs with the
node sets {(7),(9)} and {(8),(9)} are not
SCCs of the original dependency graph,
since they are proper subgraphs of the
subgraph with the node set {(7),(8),(9)}
in which there is a non-empty path from
every node to every node.

Part (c) The exact dependency graph for R
contains an edge from a dependency pair s — ¢
to a dependency pair v — v if to =% ur
for some instances to and ur. For the depen-
dency pairs (9) and (6), this condition is satis-
fied: Let 0 = {z+— h(b)} and 7 = {x — b},
then ff(z,z)0 = fHh(b),h(b)) rewrites to
4z, h(z))T = f4(b, h(b)) using rule (5).



