
Automated Reasoning I, 2015
Final Exam, Sample Solution

Assignment 1

We first define for every Σ-algebraA an algebra
A′ by UA′ = UA, fA′ = fA for every f/n ∈ Ω,
and PA′ = Um

A
\ PA for every P/m ∈ Π.

In the next step we prove the lemma that
A(β)(neg(F )) = A′(β)(F ) for every formula F
and every assignment β.

We use induction over the structure of for-
mulas. Clearly A(β)(neg(⊥)) = A(β)(⊥) =
0 = A′(β)(⊥) and A(β)(neg(⊤)) = A(β)(⊤) =
1 = A′(β)(⊤).

Since all function symbols are interpreted
in the same way in the algebras A and
A′, we get A(β)(t) = A′(β)(t) for every
term t; therefore A(β)(neg(P (t1, . . . , tm))) =
A(β)(¬P (t1, . . . , tm)) = 1 iff (A(β)(t1), . . . ,
A(β)(tm)) /∈ PA iff (A′(β)(t1), . . . ,A

′(β)(tm))
∈ PA′ iff A′(β)(P (t1, . . . , tm)) = 1.

By structural induction we now obtain
A(β)(neg(F ∧ G)) = A(β)(neg(F ) ∧ neg(G))
= min{A(β)(neg(F )), A(β)(neg(G))} =
min{A′(β)(F ), A′(β)(G)} = A′(β)(F ∧ G)
and A(β)(neg(¬F )) = A(β)(¬(neg(F ))) =
1−A(β)(neg(F )) = 1−A′(β)(F ) = A(β)(¬F )
and A(β)(neg(∃xF )) = A(β)(∃x (neg(F )))
= maxa∈UA

{A(β[x 7→ a])(neg(F ))} =
maxa∈U

A′
{A′(β[x 7→ a])(F )} = A′(β)(∃xF ).

Using the lemma, we now see that if F
is valid, then for every A and β we get
A(β)(neg(F )) = A′(β)(F ) = 1, which implies
that neg(F ) is valid as well.

Note:

– The subformulas of valid (or unsatisfiable)
formulas are in general neither valid nor un-
satisfiable. E.g., (∃xP (x)) ∨ (∀y ¬P (y)) is
valid, and (∃xP (x)) ∧ (∀y ¬P (y)) is unsat-
isfiable, but (∃xP (x)) and (∀y ¬P (y)) are
neither valid nor unsatisfiable. For this rea-
son, using some lemma is unavoidable. Any
attempt to prove properties of valid (or un-
satisfiable, or satisfiable) formulas directly
by induction must fail, since the induction
hypothesis is not applicable to the subfor-
mulas.

Assignment 2

Part (a) In (1), P (b, x) and R(f(x), x) are
not maximal since P (g(x), x) ≻ P (b, x) and
P (g(x), x) ≻ R(f(x), x). In (3), ¬R(y, z) is not
maximal since ¬P (z, h(y)) ≻ ¬R(y, z). In (4),
Q(z) is not maximal since ¬P (z, b) ≻ Q(z). In
(5), ¬R(f(x), x) is not maximal since Q(x) ≻
¬R(f(x), x). The remaining literals are max-
imal in their clauses: (1)1; (2)1; (3)1; (4)1,
(4)2, (4)4; (5)1, (5)2. This yields the following
inferences:

Res. (1)1, (3)1: mgu: {x 7→ h(y), z 7→ g(h(y))}
P (b, h(y)) ∨R(f(h(y)), h(y)) ∨
¬R(y, g(h(y)))

Res. (1)1, (4)1: mgu: {x 7→ c, y 7→ g(c)}
P (b, c) ∨R(f(c), c) ∨
¬P (z, b) ∨ ¬Q(z) ∨R(z, g(c))

Res. (1)1, (4)2: mgu: {x 7→ b, z 7→ g(b)}
P (b, b) ∨R(f(b), b) ∨
¬P (y, c) ∨ ¬Q(g(b)) ∨R(g(b), y)

Fact. (5)1, (5)2: mgu: {x 7→ b}
Q(b) ∨ ¬R(f(b), b)

Part (b) Resolution inferences with
P (g(x), x) in (1) can only be prevented by
selecting the negative literals ¬R(y, z) in (3)
and ¬Q(z) in (4). By selecting ¬Q(z) in (4),
a resolution inference between (4) and (5)
becomes possible; to avoid this resolution in-
ference and the ordered factorization inference
with (5), the negative literal ¬R(f(x), x) must
be selected in (5).

Assignment 3

(1) true: [c] = {c, d}.

(2) false: f(y, c) ↔E b ↔E f(c, c) implies
f(y, c) ∈ [f(c, c)].

(3) true: the universe of T = TΣ(X)/E is
the set of all E-congruence classes of terms in
TΣ(X), so it includes [x].

(4) false: an E-congruence class contains all

terms in TΣ(X) that are E-equal to each other,
so the E-congruence class of b and f(x, c) con-
tains, e.g., f(c, c) and f(f(y, y), c) as well.
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(5) true: f(c, b) ↔E f(d, b) implies f(c, b) ∈
[f(d, b)].
(6) true: f(y, d) ↔E f(y, c) ↔E b ↔E f(z, c)
implies fT ([y], [d]) = [f(y, d)] = [f(z, c)].
(7) true: T (β)(y) = [c] = [d] = T (β)(d), so
T (β)(y ≈ d) = 1.
(8) false: for the modified assignment γ =
β[x 7→ [b]], T (γ)(z) = [b] 6= [c] = T (γ)(c).

Assignment 4

Since every application of a rule in R reduces
the size of the term by 1, the rewrite system
R is obviously terminating. It has no criti-
cal pairs, so it is locally confluent and, by ter-
mination, confluent. By Birkhoff’s Theorem,
R |= ∀~x (s ≈ t) if and only if s ↔∗

R t. As R is
confluent, s ↔∗

R t if and only if s →∗
R u ←∗

R t
for some u. Since every R-rewrite step reduces
the size of the term by 1, the derivation s→∗

R u
can consist of at most |s| − 1 steps and the
derivation u←∗

R t can consist of at most |t| − 1
steps; so we get a derivation s ↔∗

R t with at
most (|s| − 1) + (|t| − 1) rewrite steps.

Assignment 5

The relation ≻do is not stable under substi-
tutions. For instance s = f(x, g(g(y))) ≻do

f(g(x), g(y)) = t since depth(s) = 3 and
depth(t) = 2, but if σ = {x 7→ h(h(z))},
then we get sσ = f(h(h(z)), g(g(y))) ≺do

f(g(h(h(z))), g(y)) = tσ since depth(sσ) = 3
and depth(tσ) = 4.

Assignment 6

Part (a) The set of defined symbols is D =
{f, g, h}, therefore R has four dependency
pairs:

f ♯(x, h(x))→ h♯(k(x)) (6)

f ♯(h(x), y)→ g♯(x, g(h(x), x)) (7)

f ♯(h(x), y)→ g♯(h(x), x) (8)

g♯(x, x)→ f ♯(x, x) (9)

Note:

– There is no dependency pair f ♯(h(x), y) →
h♯(x) derived from (2), since h(x) is a proper
subterm of the left-hand side of (2).

Part (b) The approximated dependency
graph for R is

(7)

(6) (9) (8)

The only SCC has the node set {(7), (8), (9)}.
We use a simple projection π with π(f ♯) = 1
and π(g♯) = 1. For (7), π(f ♯(h(x), y)) =
h(x) ⊲ x = π(g♯(x, g(h(x), x))), for (8),
π(f ♯(h(x), y)) = h(x) = π(g♯(h(x), x)), and for
(9), π(g♯(x, x)) = x = π(f ♯(x, x)). So we can
delete node (7) from the dependency graph and
obtain

(6) (9) (8)

Now the only SCC has the node set {(8), (9)}.
We use a simple projection π with π(f ♯) = 1
and π(g♯) = 2. For (8), π(f ♯(h(x), y)) =
h(x) ⊲ x = π(g♯(h(x), x)) and for (9),
π(g♯(x, x)) = x = π(f ♯(x, x)). Therefore, we
can now delete (8) from the dependency graph
and obtain

(6) (9)

Since there are no more SCCs left, the TRS R
is terminating.

Note:

– An SCC is a maximal subgraph in which
there is a non-empty path from every node
to every node. The subgraphs with the
node sets {(7), (9)} and {(8), (9)} are not

SCCs of the original dependency graph,
since they are proper subgraphs of the
subgraph with the node set {(7), (8), (9)}
in which there is a non-empty path from
every node to every node.

Part (c) The exact dependency graph for R
contains an edge from a dependency pair s→ t
to a dependency pair u → v if tσ →∗

R uτ
for some instances tσ and uτ . For the depen-
dency pairs (9) and (6), this condition is satis-
fied: Let σ = {x 7→ h(b)} and τ = {x 7→ b},
then f ♯(x, x)σ = f ♯(h(b), h(b)) rewrites to
f ♯(x, h(x))τ = f ♯(b, h(b)) using rule (5).
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