
3.7 Herbrand Interpretations

From now on we shall consider FOL without equality. We assume that Ω contains at
least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f(s1, . . . , sn), f/n ∈ Ω

In other words, values are fixed to be ground terms and functions are fixed to be the term
constructors. Only predicate symbols P/m ∈ Π may be freely interpreted as relations
PA ⊆ Tm

Σ .

Proposition 3.12 Every set of ground atoms I uniquely determines a Herbrand inter-
pretation A via

(s1, . . . , sn) ∈ PA iff P (s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with sets of Σ-ground atoms.

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F , if I |= F .

Theorem 3.13 (Herbrand) Let N be a set of (universally quantified) Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)
⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | (∀~xC) ∈ N, σ : X → TΣ } is the set of ground
instances of N .

[The proof will be given below in the context of the completeness proof for general
resolution.]

61



3.8 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . , Fn, Fn+1), n ≥ 0,

called inferences, and written

premises︷ ︸︸ ︷
F1 . . . Fn

Fn+1︸︷︷︸
conclusion

.

Clausal inference system: premises and conclusions are clauses. One also considers
inference systems over other data structures.

Inference Systems

Inference systems Γ are shorthands for reduction systems over sets of formulas. If N is
a set of formulas, then

premises︷ ︸︸ ︷
F1 . . . Fn

Fn+1︸︷︷︸
conclusion

side condition

is a shorthand for

N ∪ {F1, . . . , Fn} ⇒Γ N ∪ {F1, . . . , Fn} ∪ {Fn+1}
if side condition

Proofs

A proof in Γ of a formula F from a set of formulas N (called assumptions) is a sequence
F1, . . . , Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N or there exists an inference

Fm1
. . . Fmn

Fi

in Γ, such that 0 ≤ mj < i, for 1 ≤ j ≤ n.

62



Soundness and Completeness

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F if there exists a proof in Γ of F from N.

Γ is called sound, if

F1 . . . Fn

F
∈ Γ implies F1, . . . , Fn |= F

Γ is called complete, if

N |= F implies N ⊢Γ F

Γ is called refutationally complete, if

N |= ⊥ implies N ⊢Γ ⊥

Proposition 3.14

(i) Let Γ be sound. Then N ⊢Γ F ⇒ N |= F

(ii) If N ⊢Γ F then there exist finitely many F1, . . . , Fn ∈ N such that F1, . . . , Fn ⊢Γ F

Reduced Proofs

The definition of a proof of F given above admits sequences F1, . . . , Fk of formulas where
some Fi are not ancestors of Fk = F (i. e., some Fi are not actually used to derive F ).

A proof is called reduced, if every Fi with i < k is an ancestor of Fk.

We obtain a reduced proof from a proof by marking first Fk and then recursively all the
premises used to derive a marked conclusion, and by deleting all non-marked formulas
in the end.

63



Reduced Proofs as Trees

markings =̂ formulas
leaves =̂ assumptions and axioms

other nodes =̂ inferences: conclusion =̂ parent node
premises =̂ child nodes

P (f(c))

P (f(c)) ∨Q(b)

P (f(c)) ∨Q(b) ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b)

¬P (f(c)) ∨Q(b) ∨Q(b)

¬P (f(c)) ∨Q(b)

Q(b) ∨Q(b)

Q(b) ¬P (f(c)) ∨ ¬Q(b)

¬P (f(c))

⊥

3.9 Ground (or propositional) Resolution

We observe that propositional clauses and ground clauses are essentially the same, as
long as we do not consider equational atoms.

In this section we only deal with ground clauses.

Unlike in Section 2 we admit duplicated literals in clauses, i. e., we treat clauses like
multisets of literals, not like sets.

The Resolution Calculus Res

Resolution inference rule:

D ∨A C ∨ ¬A

D ∨ C

Terminology: D ∨ C: resolvent; A: resolved atom

(Positive) factorization inference rule:

C ∨ A ∨A

C ∨A

These are schematic inference rules; for each substitution of the schematic variables C,
D, and A, by ground clauses and ground atoms, respectively, we obtain an inference.

64



We treat “∨” as associative and commutative, hence A and ¬A can occur anywhere in
the clauses; moreover, when we write C ∨ A, etc., this includes unit clauses, that is,
C = ⊥.

Sample Refutation

1. ¬P (f(c)) ∨ ¬P (f(c)) ∨Q(b) (given)
2. P (f(c)) ∨Q(b) (given)
3. ¬P (g(b, c)) ∨ ¬Q(b) (given)
4. P (g(b, c)) (given)
5. ¬P (f(c)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)
6. ¬P (f(c)) ∨Q(b) (Fact. 5.)
7. Q(b) ∨Q(b) (Res. 2. into 6.)
8. Q(b) (Fact. 7.)
9. ¬P (g(b, c)) (Res. 8. into 3.)
10. ⊥ (Res. 4. into 9.)

Soundness of Resolution

Theorem 3.15 Propositional resolution is sound.

Proof. Let B ∈ Σ-Alg. We have to show:

(i) for resolution: B |= D ∨ A, B |= C ∨ ¬A ⇒ B |= D ∨ C

(ii) for factorization: B |= C ∨A ∨ A ⇒ B |= C ∨A

(i): Assume premises are valid in B. Two cases need to be considered:
If B |= A, then B |= C, hence B |= D ∨ C.
Otherwise, B |= ¬A, then B |= D, and again B |= D ∨ C.
(ii): Obvious. ✷

Note: In ground first-order logic we have (like in propositional logic):

1. B |= L1 ∨ . . . ∨ Ln if and only if there exists i: B |= Li.

2. B |= A or B |= ¬A.

This does not hold for formulas with variables!

65



3.10 Refutational Completeness of Resolution

How to show refutational completeness of ground resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥, or equivalently: If N 6⊢Res ⊥, then N
has a model.

• Idea: Suppose that we have computed sufficiently many inferences (and not derived
⊥).

• Now order the clauses in N according to some appropriate ordering, inspect the
clauses in ascending order, and construct a series of Herbrand interpretations.

• The limit interpretation can be shown to be a model of N .

Clause Orderings

1. We assume that ≻ is any fixed ordering on ground atoms that is total and well-
founded. (There exist many such orderings, e. g., the lenght-based ordering on
atoms when these are viewed as words over a suitable alphabet.)

2. Extend ≻ to an ordering ≻L on ground literals:

[¬]A ≻L [¬]B , if A ≻ B
¬A ≻L A

3. Extend ≻L to an ordering ≻C on ground clauses:
≻C = (≻L)mul, the multiset extension of ≻L.

Notation: ≻ also for ≻L and ≻C .

Example

Suppose A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0. Then:

A1 ∨ ¬A5

≻ A3 ∨ ¬A4

≻ ¬A1 ∨A3 ∨A4

≻ A1 ∨ ¬A2

≻ ¬A1 ∨ A2

≻ A1 ∨ A1 ∨A2

≻ A0 ∨ A1

66



Properties of the Clause Ordering

Proposition 3.16

1. The orderings on literals and clauses are total and well-founded.

2. Let C and D be clauses with A = maxatom(C), B = maxatom(D), where
maxatom(C) denotes the maximal atom in C.

(i) If A ≻ B then C ≻ D.

(ii) If A = B, A occurs negatively in C but only positively in D, then C ≻ D.

Stratified Structure of Clause Sets

Let A ≻ B. Clause sets are then stratified in this form:

¬A∨ . . .
A



 . . . ∨A ∨A all clauses C with maxatom(C) = A

. . . ∨A≻

.

.

.

¬B ∨ . . .
B



 . . . ∨B ∨B all clauses D with maxatom(D) = B

. . . ∨B

Closure of Clause Sets under Res

Res(N) = {C | C is conclusion of an inference in Res

with premises in N }
Res

0(N) = N
Res

n+1(N) = Res(Resn(N)) ∪ Res
n(N), for n ≥ 0

Res
∗(N) =

⋃
n≥0

Res
n(N)

N is called saturated (w. r. t. resolution), if Res(N) ⊆ N .

Proposition 3.17

(i) Res
∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground clauses:

N |= ⊥ implies ⊥ ∈ Res
∗(N)

67



Construction of Interpretations

Given: set N of ground clauses, atom ordering ≻.

Wanted: Herbrand interpretation I such that

I |= N if N is saturated and ⊥ 6∈ N

Construction according to ≻, starting with the smallest clause.

Main Ideas of the Construction

• Clauses are considered in the order given by ≻.

• When considering C, one already has an interpretation so far available (IC). Ini-
tially IC = ∅.

• If C is true in this interpretation, nothing needs to to be changed.

• Otherwise, one would like to change the interpretation such that C becomes true.

• Changes should, however, be monotone. One never deletes atoms from the inter-
pretation, and the truth value of clauses smaller than C should not change from
true to false.

• Hence, one adds ∆C = {A}, if and only if C is false in IC , if A occurs positively
in C (adding A will make C become true) and if this occurrence in C is strictly
maximal in the ordering on literals (changing the truth value of A has no effect on
smaller clauses). Otherwise, ∆C = ∅.

• We say that the construction fails for a clause C, if C is false in IC and ∆C = ∅.

• We will show: If there are clauses for which the construction fails, then some
inference with the smallest such clause (the so-called “minimal counterexample”)
has not been computed. Otherwise, the limit interpretation is a model of all
clauses.

Construction of Candidate Interpretations

Let N,≻ be given. We define sets IC and ∆C for all ground clauses C over the given
signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=





{A}, if C ∈ N , C = C ′ ∨A, A ≻ C ′, IC 6|= C

∅, otherwise

68



We say that C produces A, if ∆C = {A}.

Note that the definitions satisfy the conditions of Thm. 1.8; so they are well-defined
even if {D | C ≻ D } is infinite.

The candidate interpretation for N (w. r. t. ≻) is given as I≻N :=
⋃

C ∆C . (We also simply
write IN or I for I≻N if ≻ is either irrelevant or known from the context.)

Example

Let A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0 (max. literals in red)

clauses C IC ∆C Remarks

7 ¬A1 ∨A5 {A1, A2, A4} {A5}
6 ¬A1 ∨ A3 ∨ ¬A4 {A1, A2, A4} ∅ max. lit. ¬A4 neg.;

min. counter-ex.
5 A0 ∨ ¬A1 ∨A3 ∨A4 {A1, A2} {A4} A4 maximal
4 ¬A1 ∨A2 {A1} {A2} A2 maximal
3 A1 ∨A2 {A1} ∅ true in IC
2 A0 ∨A1 ∅ {A1} A1 maximal
1 ¬A0 ∅ ∅ true in IC

I = {A1, A2, A4, A5} is not a model of the clause set
⇒ there exists a counterexample.

Structure of N,≻

Let A ≻ B. Note that producing a new atom does not change the truth value of smaller
clauses.

possibly productive

¬A∨ . . .
A



 . . . ∨A ∨A all clauses C with maxatom(C) = A

. . . ∨A≻

.

.

.

¬B ∨ . . .
B



 . . . ∨B ∨B all clauses D with maxatom(D) = B

. . . ∨B

69



Some Properties of the Construction

Proposition 3.18

(i) If D = D′ ∨ ¬A, then no C � D produces A.

(ii) If ID |= D, then IC |= D for every C � D and I≻N |= D.

(iii) If D = D′ ∨ A produces A, then IC |= D for every C ≻ D and I≻N |= D.

(iv) If D = D′ ∨ A produces A, then IC 6|= D′ for every C � D and I≻N 6|= D′.

(v) If for every clause C ∈ N , C is productive or IC |= C, then I≻N |= N .

Proof. (i) If C produces A, then A � L for every literal L of C. On the other hand, D
contains ¬A, and ¬A ≻ A. Since ¬A ≻ L for every literal L of C, we obtain D ≻ C.

(ii) Suppose that ID |= D and C � D. If ID |= A for some positive literal A of D, then
A ∈ ID ⊆ IC ⊆ I≻N , so IC |= D and I≻N |= D. Otherwise ID |= ¬A for some negative
literal ¬A of D, hence A /∈ ID. By (i), no clause that is larger than or equal to D
produces A, so A /∈ IC and A /∈ I≻N . Again, IC |= D and I≻N |= D.

(iii) Obvious, since C ≻ D implies A ∈ ∆D ⊆ IC ⊆ I≻N .

(iv) If D = D′ ∨A produces A, then A ≻ L for every literal L of D′ and ID 6|= A. Since
ID 6|= D, we have ID 6|= L for every literal L of D′. Let C � D. If L is a positive literal
A′, then A′ /∈ ID. Since all atoms in IC \ ID and I≻N \ ID are larger than or equal to
A, we get A′ /∈ IC and A′ /∈ I≻N . Otherwise L is a negative literal ¬A′, then obviously
A′ ∈ ID ⊆ IC ⊆ I≻N . In both cases L is false in IC and I≻N .

(v) By (ii) and (iii). ✷

Model Existence Theorem

Proposition 3.19 Let ≻ be a clause ordering. If N is saturated w. r. t. Res and ⊥ 6∈ N ,
then for every clause C ∈ N , C is productive or IC |= C.

Proof. Let N be saturated w. r. t. Res and ⊥ 6∈ N . Assume that the proposition does
not hold. By well-foundedness, there must exist a minimal clause C ∈ N (w. r. t. ≻)
such that C is neither productive nor IC |= C. As C 6= ⊥ there exists a maximal literal
in C. There are two possible reasons why C is not productive:

Case 1: The maximal literal ¬A is negative, i. e., C = C ′ ∨ ¬A. Then IC |= A and
IC 6|= C ′. So someD = D′ ∨A ∈ N with C ≻ D produces A, and IC 6|= D′. The inference

D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

yields a clause D′ ∨ C ′ ∈ N that is smaller than C. As IC 6|= D′ ∨ C ′, we know that
D′ ∨C ′ is neither productive nor ID′∨C′ |= D′ ∨C ′. This contradicts the minimality of C.

70



Case 2: The maximal literal A is positive, but not strictly maximal, i. e., C = C ′ ∨A∨A.
Then there is an inference

C ′ ∨ A ∨ A

C ′ ∨ A

that yields a smaller clause C ′ ∨A ∈ N . As IC 6|= C ′ ∨A, this clause is neither productive
nor IC′∨A |= C ′ ∨A. Since C ≻ C ′ ∨A, this contradicts the minimality of C. ✷

Theorem 3.20 (Bachmair & Ganzinger 1990) Let ≻ be a clause ordering. If N is
saturated w. r. t. Res and ⊥ 6∈ N , then I≻N |= N .

Proof. By Prop. 3.19 and part (v) of Prop. 3.18. ✷

Corollary 3.21 Let N be saturated w. r. t. Res . Then N |= ⊥ if and only if ⊥ ∈ N .

Compactness of Propositional Logic

Lemma 3.22 Let N be a set of propositional (or first-order ground) clauses. Then N
is unsatisfiable, if and only if some finite subset N ′ ⊆ N is unsatisfiable.

Proof. The “if” part is trivial. For the “only if” part, assume that N be unsatisfiable.
Consequently, Res∗(N) is unsatisfiable as well. By refutational completeness of resolu-
tion, ⊥ ∈ Res

∗(N). So there exists an n ≥ 0 such that ⊥ ∈ Res
n(N), which means that

⊥ has a finite resolution proof. Now choose N ′ as the set of assumptions in this proof.
✷

Theorem 3.23 (Compactness for Propositional Formulas) Let S be a set of pro-
positional (or first-order ground) formulas. Then S is unsatisfiable, if and only if some
finite subset S ′ ⊆ S is unsatisfiable.

Proof. The “if” part is again trivial. For the “only if” part, assume that S be unsatis-
fiable. Transform S into an equivalent set N of clauses. By the previous lemma, N has
a finite unsatisfiable subset N ′. Now choose for every clause C in N ′ one formula F of
S such that C is contained in the CNF of F . Let S ′ be the set of these formulas. ✷

71



3.11 General Resolution

Propositional (ground) resolution:

refutationally complete,

in its most naive version: not guaranteed to terminate for satisfiable sets of clauses,
(improved versions do terminate, however)

inferior to the CDCL procedure.

But: in contrast to the CDCL procedure, resolution can be easily extended to non-
ground clauses.

Observation

If A is a model of an (implicitly universally quantified) clause C, then by Lemma 3.8 it
is also a model of all (implicitly universally quantified) instances Cσ of C.

Consequently, if we show that some instances of clauses in a set N are unsatisfiable,
then we have also shown that N itself is unsatisfiable.

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(f(a, b)) ¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, b))

¬Q(f(a, b)) Q(f(a, b))

⊥

{z′ 7→ a, z 7→ f(a, b)} {y 7→ a} {y 7→ b} {x′ 7→ a, x 7→ b}

72



Early approaches (Gilmore 1960, Davis and Putnam 1960):

Generate ground instances of clauses.

Try to refute the set of ground instances by resolution.

If no contradiction is found, generate more ground instances.

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals (so that inferences become possi-
ble).

Idea (Robinson 1965):

Do not instantiate more than necessary to get complementary literals
⇒ most general unifiers (mgu).

Calculus works with non-ground clauses; inferences with non-ground clauses represent
infinite sets of ground inferences which are computed simultaneously
⇒ lifting principle.

Computation of instances becomes a by-product of boolean reasoning.

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(z) ¬P (a, a) ¬P (a, b) P (a, b) ∨Q(f(a, x))

¬Q(z) Q(f(a, x))

¬Q(f(a, x)) Q(f(a, x))

⊥

{z′ 7→ a} {y 7→ a} {y 7→ b} {x′ 7→ a}

{z 7→ f(a, x)}

73



Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si, ti terms or atoms) be a multiset of equality problems.

A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

A substitution σ is called more general than a substitution τ , denoted by σ ≤ τ , if
there exists a substitution ρ such that ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the
composition of σ and ρ as mappings. (Note that ρ ◦ σ has a finite domain as required
for a substitution.)

If a unifier of E is more general than any other unifier of E, then we speak of a most
general unifier of E, denoted by mgu(E).

Proposition 3.24

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ are equal up to
(bijective) variable renaming, for any x in X .

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 3.25 σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

Rule-Based Naive Standard Unification

t
.
= t, E ⇒SU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒SU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒SU ⊥

if f 6= g

x
.
= t, E ⇒SU x

.
= t, E{x 7→ t}

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒SU x

.
= t, E

if t 6∈ X

74



SU: Main Properties

If E = {x1

.
= u1, . . . , xk

.
= uk}, with xi pairwise distinct, xi 6∈ var(uj), then E is called

an (equational problem in) solved form representing the solution σE = {x1 7→ u1, . . . ,
xk 7→ uk}.

Proposition 3.26 If E is a solved form then σE is an mgu of E.

Theorem 3.27

1. If E ⇒SU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒SU ⊥ then E is not unifiable.

3. If E
∗

⇒SU E ′ with E ′ in solved form, then σE′ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let’s treat the case for the 4th
rule here. Suppose σ is a unifier of x

.
= t, that is, xσ = tσ. Thus, σ ◦ {x 7→ t} = σ[x 7→

tσ] = σ[x 7→ xσ] = σ. Therefore, for any equation u
.
= v in E: uσ = vσ, iff u{x 7→

t}σ = v{x 7→ t}σ. (2) and (3) follow by induction from (1) using Proposition 3.26. ✷

Main Unification Theorem

Theorem 3.28 E is unifiable if and only if there is a most general unifier σ of E, such
that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Proof. The right-to-left implication is trivial. For the left-to-right implication we ob-
serve the following:

• ⇒SU is terminating. A suitable lexicographic ordering on the multisets E (with ⊥
minimal) shows this. Compare in this order:

(1) the number of variables that occur in E below a function or predicate symbol,
or on the right-hand side of an equation, or at least twice;

(2) the multiset of the sizes (numbers of symbols) of all equations in E;

(3) the number of non-variable left-hand sides of equations in E.

• A system E that is irreducible w. r. t. ⇒SU is either ⊥ or a solved form.

• Therefore, reducing any E by SU will end (no matter what reduction strategy we
apply) in an irreducible E ′ having the same unifiers as E, and we can read off the
mgu (or non-unifiability) of E from E ′ (Theorem 3.27, Proposition 3.26).

• σ is idempotent because of the substitution in rule 4. dom(σ) ∪ codom(σ) ⊆
var(E), as no new variables are generated.

✷

75



Rule-Based Polynomial Unification

Problem: using ⇒SU , an exponential growth of terms is possible.

The following unification algorithm avoids this problem, at least if the final solved form
is represented as a DAG.

t
.
= t, E ⇒PU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒PU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒PU ⊥

if f 6= g

x
.
= y, E ⇒PU x

.
= y, E{x 7→ y}

if x ∈ var(E), x 6= y

x1

.
= t1, . . . , xn

.
= tn, E ⇒PU ⊥

if there are positions pi with
ti|pi = xi+1, tn|pn = x1

and some pi 6= ε

x
.
= t, E ⇒PU ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒PU x

.
= t, E

if t 6∈ X

x
.
= t, x

.
= s, E ⇒PU x

.
= t, t

.
= s, E

if t, s 6∈ X and |t| ≤ |s|

Properties of PU

Theorem 3.29

1. If E ⇒PU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒PU ⊥ then E is not unifiable.

3. If E
∗

⇒PU E ′ with E ′ in solved form, then σE′ is an mgu of E.

Note: The solved form of ⇒PU is different from the solved form obtained from ⇒SU .
In order to obtain the unifier σE′ , we have to sort the list of equality problems xi

.
= ti

in such a way that xi does not occur in tj for j < i, and then we have to compose the
substitutions {x1 7→ t1} ◦ · · · ◦ {xk 7→ tk}.

76


