
3.17 Summary: Resolution Theorem Proving

• Resolution is a machine calculus.

• Subtle interleaving of enumerating instances and proving inconsistency through
the use of unification.

• Parameters: atom ordering ≻ and selection function sel. On the non-ground level,
ordering constraints can (only) be solved approximatively.

• Completeness proof by constructing candidate interpretations from productive
clauses C ∨ A, A ≻ C.

• Local restrictions of inferences via ≻ and sel
⇒ fewer proof variants.

• Global restrictions of the search space via elimination of redundancy
⇒ computing with “smaller”/“easier” clause sets;
⇒ termination on many decidable fragments.

• However: not good enough for dealing with orderings, equality and more specific
algebraic theories (lattices, abelian groups, rings, fields)
⇒ further specialization of inference systems required.

3.18 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem Proving, Springer-Verlag,
New York, 1996, chapters 3, 6, 7.

R. M. Smullyan: First-Order Logic, Dover Publ., New York, 1968, revised 1995.

Like resolution, semantic tableaux were developed in the sixties, independently by Zbig-
niew Lis and Raymond Smullyan on the basis of work by Gentzen in the 30s and of Beth
in the 50s.

93

Idea

Idea (for the propositional case):

A set {F ∧G} ∪ N of formulas has a model if and only if {F ∧G, F , G} ∪ N has a
model.

A set {F ∨G} ∪ N of formulas has a model if and only if {F ∨G, F} ∪ N or
{F ∨G, G} ∪N has a model.

(and similarly for other connectives).

To avoid duplication, represent sets as paths of a tree.

Continue splitting until two complementary formulas are found ⇒ inconsistency de-
tected.

A Tableau for {P ∧ ¬(Q ∨ ¬R), ¬Q ∨ ¬R}

1. P ∧ ¬(Q ∨ ¬R)
2. ¬Q ∨ ¬R

3. ¬Q
5. P
6. ¬(Q ∨ ¬R)
7. ¬Q
8. ¬¬R
9. R

4. ¬R
10. P
11. ¬(Q ∨ ¬R)

This tableau is not
“maximal”,
however the first
“path” is. This
path is not
“closed”, hence the
set {1, 2} is
satisfiable. (These
notions will all be
defined below.)

Properties

Properties of tableau calculi:

analytic: inferences correspond closely to the logical meaning of the symbols.

goal oriented: inferences operate directly on the goal to be proved (unlike, e. g., ordered
resolution).

global: some inferences affect the entire proof state (set of formulas), as we will see
later.

94

Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and expand the tableau at a
leaf. We append the conclusions of a rule (horizontally or vertically) at a leaf, whenever
the premise of the expansion rule matches a formula appearing anywhere on the path
from the root to that leaf.

Negation Elimination

¬¬F
F

¬⊤
⊥

¬⊥
⊤

α-Expansion
(for formulas that are essentially conjunctions: append subformulas α1 and α2 one
on top of the other)

α

α1

α2

β-Expansion
(for formulas that are essentially disjunctions:
append β1 and β2 horizontally, i. e., branch into β1 and β2)

β

β1 | β2

Classification of Formulas

conjunctive disjunctive
α α1 α2 β β1 β2

F ∧G F G ¬(F ∧G) ¬F ¬G
¬(F ∨G) ¬F ¬G F ∨G F G
¬(F → G) F ¬G F → G ¬F G

We assume that the binary connective ↔ has been eliminated in advance.

95

Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered tree and inductively
defined as follows: Let {F1, . . . , Fn} be a set of formulas.

(i) The tree consisting of a single path

F1

...
Fn

is a tableau for {F1, . . . , Fn}. (We do not draw edges if nodes have only one
successor.)

(ii) If T is a tableau for {F1, . . . , Fn} and if T ′ results from T by applying an expansion
rule then T ′ is also a tableau for {F1, . . . , Fn}.

Note: We may also consider the limit tableau of a tableau expansion; this can be an
infinite tree.

A path (from the root to a leaf) in a tableau is called closed, if it either contains ⊥, or
else it contains both some formula F and its negation ¬F . Otherwise the path is called
open.

A tableau is called closed, if all paths are closed.

A tableau proof for F is a closed tableau for {¬F}.

A path π in a tableau is called maximal, if for each formula F on π that is neither a
literal nor ⊥ nor ⊤ there exists a node in π at which the expansion rule for F has been
applied.

In that case, if F is a formula on π, π also contains:

(i) α1 and α2, if F is a α-formula,

(ii) β1 or β2, if F is a β-formula, and

(iii) F ′, if F is a negation formula, and F ′ the conclusion of the corresponding elimina-
tion rule.

A tableau is called maximal, if each path is closed or maximal.

A tableau is called strict, if for each formula the corresponding expansion rule has been
applied at most once on each path containing that formula.

A tableau is called clausal, if each of its formulas is a clause.

96

A Sample Proof

One starts out from the negation of the formula to be proved.

1. ¬
(

(P → (Q→ R))→ ((P ∨ S)→ ((Q→ R) ∨ S))
)

2. (P → (Q→ R)) [11]
3. ¬((P ∨ S)→ ((Q→ R) ∨ S)) [12]
4. P ∨ S [31]
5. ¬((Q→ R) ∨ S)) [32]
6. ¬(Q→ R) [51]
7. ¬S [52]

8. ¬P [21] 9. Q→ R [22]

10. P [41] 11. S [42]

There are three paths, each of them closed.

Properties of Propositional Tableaux

We assume that T is a tableau for {F1, . . . , Fn}.

Theorem 3.51 {F1, . . . , Fn} satisfiable ⇔ some path (i. e., the set of its formulas) in
T is satisfiable.

Proof. (⇐) Trivial, since every path contains in particular F1, . . . , Fn.
(⇒) By induction over the structure of T . ✷

Corollary 3.52 T closed ⇒ {F1, . . . , Fn} unsatisfiable

Theorem 3.53 Every strict propositional tableau expansion is finite.

Proof. New formulas resulting from expansion are either ⊥, ⊤ or subformulas of the
expanded formula (modulo de Morgan’s law), so the number of formulas that can occur
is finite. By strictness, on each path a formula can be expanded at most once. Therefore,
each path is finite, and a finitely branching tree with finite paths is finite by Lemma 1.9.

✷

Conclusion: Strict and maximal tableaux can be effectively constructed.

97

Refutational Completeness

A set H of propositional formulas is called a Hintikka set, if

(1) there is no P ∈ Π with P ∈ H and ¬P ∈ H;

(2) ⊥ /∈ H, ¬⊤ /∈ H;

(3) if ¬¬F ∈ H, then F ∈ H;

(4) if α ∈ H, then α1 ∈ H and α2 ∈ H;

(5) if β ∈ H, then β1 ∈ H or β2 ∈ H.

Lemma 3.54 (Hintikka’s Lemma) Every Hintikka set is satisfiable.

Proof. Let H be a Hintikka set. Define a valuation A by A(P) = 1 if P ∈ H and
A(P) = 0 otherwise. Then show that A(F) = 1 for all F ∈ H by induction over the size
of formulas. ✷

Theorem 3.55 Let π be a maximal open path in a tableau. Then the set of formulas
on π is satisfiable.

Proof. We show that set of formulas on π is a Hintikka set: Conditions (3), (4), (5)
follow from the fact that π is maximal; conditions (1) and (2) follow from the fact that
π is open and from maximality for the second negation elimination rule. ✷

Note: The theorem holds also for infinite trees that are obtained as the limit of a tableau
expansion.

Theorem 3.56 {F1, . . . , Fn} satisfiable ⇔ there exists no closed strict tableau for
{F1, . . . , Fn}.

Proof. (⇒) Clear by Cor. 3.52.
(⇐) Let T be a strict maximal tableau for {F1, . . . , Fn} and let π be an open path
in T . By the previous theorem, the set of formulas on π is satisfiable, and hence by
Theorem 3.51 the set {F1, . . . , Fn}, is satisfiable. ✷

98

Consequences

The validity of a propositional formula F can be established by constructing a strict
maximal tableau for {¬F}:

• T closed ⇔ F valid.

• It suffices to test complementarity of paths w. r. t. atomic formulas (cf. reasoning
in the proof of Theorem 3.55).

• Which of the potentially many strict maximal tableaux one computes does not
matter. In other words, tableau expansion rules can be applied don’t-care non-
deterministically (“proof confluence”).

• The expansion strategy, however, can have a dramatic impact on the tableau size.

A Variant of the β-Rule

Since F ∨G |=| F ∨ (G ∧ ¬F), the β expansion rule

β

β1 | β2

can be replaced by the following variant:

β

β1

∣

∣

∣

∣

β2

¬β1

The variant β-rule can lead to much shorter proofs, but it is not always beneficial.

In general, it is most helpful if ¬β1 can be at most (iteratively) α-expanded.

99

3.19 Semantic Tableaux for First-Order Logic

There are two ways to extend the tableau calculus to quantified formulas:

• using ground instantiation,

• using free variables.

Tableaux with Ground Instantiation

Classification of quantified formulas:

universal existential
γ γ(t) δ δ(t)
∀xF F{x 7→ t} ∃xF F{x 7→ t}
¬∃xF ¬F{x 7→ t} ¬∀xF ¬F{x 7→ t}

Idea:

Replace universally quantified formulas by appropriate ground instances.

γ-expansion
γ

γ(t)
where t is some ground term

δ-expansion

δ

δ(c)
where c is a new Skolem constant

Skolemization becomes part of the calculus and needs not necessarily be applied in a
preprocessing step. Of course, one could do Skolemization beforehand, and then the
δ-rule would not be needed.

Note:

Skolem constants are sufficient:
In a δ-formula ∃xF , ∃ is the outermost quantifier and x is the only free variable in F .

Problems:

Having to guess ground terms is impractical.

Even worse, we may have to guess several ground instances, as strictness for γ is
incomplete. For instance, constructing a closed tableau for

{∀x (P (x)→ P (f(x))), P (b), ¬P (f(f(b)))}

is impossible without applying γ-expansion twice on one path.

100

Free-Variable Tableaux

An alternative approach:

Delay the instantiation of universally quantified variables.

Replace universally quantified variables by new free variables.

Intuitively, the free variables are universally quantified outside of the entire tableau.

γ-expansion

γ

γ(x)
where x is a new free variable

δ-expansion

δ
δ(f(x1, . . . , xn))

where f is a new Skolem function, and the xi are the free variables in δ

Application of expansion rules has to be supplemented by a substitution rule:

(iii) If T is a tableau for {F1, . . . , Fn} and if σ is a substitution, then Tσ is also a
tableau for {F1, . . . , Fn}.

The substitution rule may, potentially, modify all the formulas of a tableau. This feature
is what makes the tableau method a global proof method. (Resolution, by comparison,
is a local method.)

One can show that it is sufficient to consider substitutions σ for which there is a path in
T containing two literals ¬A and B such that σ = mgu(A,B). Such tableaux are called
AMGU-Tableaux.

101

Example

1. ¬
(

∃w∀x P (x, w, f(x, w))→ ∃w∀x∃y P (x, w, y)
)

2. ∃w∀x P (x, w, f(x, w)) 11 [α]
3. ¬∃w∀x∃y P (x, w, y) 12 [α]
4. ∀x P (x, c, f(x, c)) 2(c) [δ]
5. ¬∀x∃y P (x, v1, y) 3(v1) [γ]
6. ¬∃y P (b(v1), v1, y) 5(b(v1)) [δ]
7. P (v2, c, f(v2, c)) 4(v2) [γ]
8. ¬P (b(v1), v1, v3) 6(v3) [γ]

7. and 8. are complementary (modulo unification):

{v2
.
= b(v1), c

.
= v1, f(v2, c)

.
= v3}

is solvable with an mgu σ = {v1 7→ c, v2 7→ b(c), v3 7→ f(b(c), c)}, and hence, Tσ is a
closed (linear) tableau for the formula in 1.

Problem:

Strictness for γ is still incomplete. For instance, constructing a closed tableau for

{∀x (P (x)→ P (f(x))), P (b), ¬P (f(f(b)))}

is impossible without applying γ-expansion twice on one path.

Semantic Tableaux vs. Resolution

• Tableaux: global, goal-oriented, “backward”.

• Resolution: local, “forward”.

• Goal-orientation is a clear advantage if only a small subset of a large set of formulas
is necessary for a proof. (Note that resolution provers saturate also those parts of
the clause set that are irrelevant for proving the goal.)

• Resolution can be combined with more powerful redundancy elimination methods;
because of its global nature this is more difficult for the tableau method.

• Resolution can be refined to work well with equality; for tableaux this seems to be
impossible.

• On the other hand tableau calculi can be easily extended to other logics; in par-
ticular tableau provers are very successful in modal and description logics.

102

3.20 Other Deductive Systems

• Instantiation-based methods
Resolution-based instance generation
Disconnection calculus
. . .

• Natural deduction

• Sequent calculus/Gentzen calculus

• Hilbert calculus

Instantiation-Based Methods for FOL

Idea:

Overlaps of complementary literals produce instantiations (as in resolution);

However, contrary to resolution, clauses are not recombined.

Instead: treat remaining variables as constant and use efficient propositional proof
methods, such as CDCL.

There are both saturation-based variants, such as partial instantiation (Hooker et al.
2002) or resolution-based instance generation (Inst-Gen) (Ganzinger and Korovin 2003),
and tableau-style variants, such as the disconnection calculus (Billon 1996; Letz and
Stenz 2001).

Successful in practice for problems that are “almost propositional” (i. e., no non-constant
function symbols, no equality).

Natural Deduction

Idea:

Model the concept of proofs from assumptions as humans do it.

To prove F → G, assume F and try to derive G.

Initial ideas: Jaśkowski (1934), Gentzen (1934); extended by Prawitz (1965).

Popular in interactive proof systems.

103

Sequent Calculus

Idea:

Assumptions internalized into the data structure of sequents

F1, . . . , Fm ⊢ G1, . . . , Gk

meaning

F1 ∧ · · · ∧ Fm → G1 ∨ · · · ∨Gk

Inferences rules, e.g.:

Γ ⊢ ∆

Γ, F ⊢ ∆
(WL)

Γ, F ⊢ ∆ Σ, G ⊢ Π

Γ,Σ, F ∨G ⊢ ∆,Π
(∨L)

Γ ⊢ ∆

Γ ⊢ F,∆
(WR)

Γ ⊢ F,∆ Σ ⊢ G,Π

Γ,Σ ⊢ F ∧G,∆,Π
(∧R)

Initial idea: Gentzen 1934.

Perfect symmetry between the handling of assumptions and their consequences; inter-
esting for proof theory.

Can be used both backwards and forwards.

Allows to simulate both natural deduction and semantic tableaux.

Hilbert Calculus

Idea:

Direct proof method (proves a theorem from axioms, rather than refuting its negation)

Axiom schemes, e. g.,

F → (G→ F)
(F → (G→ H))→ ((F → G)→ (F → H))

plus Modus ponens:

F F → G

G

Unsuitable for finding or reading proofs, but sometimes used for specifying (e.g. modal)
logics.

104

4 First-Order Logic with Equality

Equality is the most important relation in mathematics and functional programming.

In principle, problems in first-order logic with equality can be handled by any prover for
first-order logic without equality:

4.1 Handling Equality Naively

Proposition 4.1 Let F be a closed first-order formula with equality. Let ∼ /∈ Π be a
new predicate symbol. The set Eq(Σ) contains the formulas

∀x (x ∼ x)
∀x, y (x ∼ y → y ∼ x)

∀x, y, z (x ∼ y ∧ y ∼ z → x ∼ z)
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xn ∼ yn → f(x1, . . . , xn) ∼ f(y1, . . . , yn))
∀~x, ~y (x1 ∼ y1 ∧ · · · ∧ xm ∼ ym ∧ P (x1, . . . , xm)→ P (y1, . . . , ym))

for every f/n ∈ Ω and P/m ∈ Π. Let F̃ be the formula that one obtains from F if every
occurrence of ≈ is replaced by ∼. Then F is satisfiable if and only if Eq(Σ) ∪ {F̃} is
satisfiable.

Proof. Let Σ = (Ω,Π), let Σ1 = (Ω,Π ∪ {∼/2}).

For the “only if” part assume that F is satisfiable and let A be a Σ-model of F . Then we
define a Σ1-algebra B in such a way that B and A have the same universe, fB = fA for
every f ∈ Ω, PB = PA for every P ∈ Π, and ∼B is the identity relation on the universe.
It is easy to check that B is a model of both F̃ and of Eq(Σ).

For the “if” part assume that the Σ1-algebra B = (UB, (fB : Un
B → UB)f∈Ω, (PB ⊆

Um
B)P∈Π∪{∼}) is a model of Eq(Σ) ∪ {F̃}. Then the interpretation ∼B of ∼ in B is a

congruence relation on UB with respect to the functions fB and the predicates PB.

We will now construct a Σ-algebra A from B and the congruence relation ∼B. Let [a]
be the congruence class of an element a ∈ UB with respect to ∼B. The universe UA of
A is the set { [a] | a ∈ UB } of congruence classes of the universe of B. For a function
symbol f ∈ Ω, we define fA([a1], . . . , [an]) = [fB(a1, . . . , an)], and for a predicate symbol
P ∈ Π, we define ([a1], . . . , [an]) ∈ PA if and only if (a1, . . . , an) ∈ PB. Observe that
this is well-defined: If we take different representatives of the same congruence class,
we get the same result by congruence of ∼B. For any A-assignment γ choose some B-
assignment β such that B(β)(x) ∈ A(γ)(x) for every x, then for every Σ-term t we have
A(γ)(t) = [B(β)(t)], and analogously for every Σ-formula G, A(γ)(G) = B(β)(G̃). Both
properties can easily shown by structural induction. Therefore, A is a model of F . ✷

105

An analogous proposition holds for sets of closed first-order formulas with equality.

By giving the equality axioms explicitly, first-order problems with equality can in prin-
ciple be solved by a standard resolution or tableaux prover.

But this is unfortunately not efficient (mainly due to the transitivity and congruence
axioms).

Equality is theoretically difficult: First-order functional programming is Turing-complete.

But: resolution theorem provers cannot even solve equational problems that are intu-
itively easy.

Consequence: to handle equality efficiently, knowledge must be integrated into the the-
orem prover.

Roadmap

How to proceed:

• This semester: Equations (unit clauses with equality)

Term rewrite systems
Expressing semantic consequence syntactically
Knuth-Bendix-Completion
Entailment for equations

• Next semester: Equational clauses

Combining resolution and KB-completion → Superposition
Entailment for clauses with equality

4.2 Rewrite Systems

Let E be a set of (implicitly universally quantified) equations.

The rewrite relation →E ⊆ TΣ(X)× TΣ(X) is defined by

s→E t iff there exist (l ≈ r) ∈ E, p ∈ pos(s),
and σ : X → TΣ(X),
such that s|p = lσ and t = s[rσ]p.

106

An instance of the lhs (left-hand side) of an equation is called a redex (reducible expres-
sion). Contracting a redex means replacing it with the corresponding instance of the
rhs (right-hand side) of the rule.

An equation l ≈ r is also called a rewrite rule, if l is not a variable and var(l) ⊇ var(r).

Notation: l → r.

A set of rewrite rules is called a term rewrite system (TRS).

We say that a set of equations E or a TRS R is terminating, if the rewrite relation →E

or →R has this property.

(Analogously for other properties of abstract reduction systems).

Note: If E is terminating, then it is a TRS.

E-Algebras

Let E be a set of universally quantified equations. A model of E is also called an
E-algebra.

If E |= ∀~x(s ≈ t), i. e., ∀~x(s ≈ t) is valid in all E-algebras, we write this also as s ≈E t.

Goal:
Use the rewrite relation→E to express the semantic consequence relation syntactically:

s ≈E t if and only if s↔∗
E t.

Let E be a set of equations over TΣ(X). The following inference system allows to derive
consequences of E:

E ⊢ t ≈ t (Reflexivity)
for every t ∈ TΣ(X)

E ⊢ t ≈ t′

E ⊢ t′ ≈ t
(Symmetry)

E ⊢ t ≈ t′ E ⊢ t′ ≈ t′′

E ⊢ t ≈ t′′
(Transitivity)

E ⊢ t1 ≈ t′1 . . . E ⊢ tn ≈ t′n
E ⊢ f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)

(Congruence)

E ⊢ tσ ≈ t′σ (Instance)
if (t ≈ t′) ∈ E and σ : X → TΣ(X)

107

Lemma 4.2 The following properties are equivalent:

(i) s↔∗
E t

(ii) E ⊢ s ≈ t is derivable.

Proof. (i)⇒(ii): s ↔E t implies E ⊢ s ≈ t by induction on the depth of the position
where the equation is applied; then s ↔∗

E t implies E ⊢ s ≈ t by induction on the
number of rewrite steps in s↔∗

E t.

(ii)⇒(i): By induction on the size (number of symbols) of the derivation for E ⊢ s ≈ t.
✷

Constructing a quotient algebra:

Let X be a set of variables.

For t ∈ TΣ(X) let [t] = { t′ ∈ TΣ(X) | E ⊢ t ≈ t′ } be the congruence class of t.

Define a Σ-algebra TΣ(X)/E (abbreviated by T) as follows:

UT = { [t] | t ∈ TΣ(X) }.

fT ([t1], . . . , [tn]) = [f(t1, . . . , tn)] for f/n ∈ Ω.

Lemma 4.3 fT is well-defined: If [ti] = [t′i], then [f(t1, . . . , tn)] = [f(t′1, . . . , t
′
n)].

Proof. Follows directly from the Congruence rule for ⊢. ✷

Lemma 4.4 T = TΣ(X)/E is an E-algebra.

Proof. Let ∀x1 . . . xn(s ≈ t) be an equation in E; let β be an arbitrary assignment.

We have to show that T (β)(∀~x(s ≈ t)) = 1, or equivalently, that T (γ)(s) = T (γ)(t) for
all γ = β[xi 7→ [vi] | 1 ≤ i ≤ n] with [vi] ∈ UT .

Let σ = {x1 7→ v1, . . . , xn 7→ vn}, then we get by structural induction that uσ ∈ T (γ)(u)
for every u ∈ TΣ({x1, ..., xn}). In particular, sσ ∈ T (γ)(s) and tσ ∈ T (γ)(t).

By the Instance rule, E ⊢ sσ ≈ tσ is derivable, hence T (γ)(s) = [sσ] = [tσ] = T (γ)(t).
✷

108

Lemma 4.5 Let X be a countably infinite set of variables; let s, t ∈ TΣ(Y). If
TΣ(X)/E |= ∀~x(s ≈ t), then E ⊢ s ≈ t is derivable.

Proof. Without loss of generality, we assume that all variables in ~x are contained in
X . (Otherwise, we rename the variables in the equation. Since X is countably infinite,
this is always possible.) Assume that T |= ∀~x(s ≈ t), i. e., T (β)(∀~x(s ≈ t)) = 1.
Consequently, T (γ)(s) = T (γ)(t) for all γ = β[xi 7→ [vi] | 1 ≤ i ≤ n] with [vi] ∈ UT .

Choose vi := xi, then by structural induction [u] = T (γ)(u) for every u ∈ TΣ({x1, ..., xn}),
so [s] = T (γ)(s) = T (γ)(t) = [t]. Therefore E ⊢ s ≈ t is derivable by definition of T .

✷

Theorem 4.6 (“Birkhoff’s Theorem”) Let X be a countably infinite set of vari-
ables, let E be a set of (universally quantified) equations. Then the following properties
are equivalent for all s, t ∈ TΣ(X):

(i) s↔∗
E t.

(ii) E ⊢ s ≈ t is derivable.

(iii) s ≈E t, i. e., E |= ∀~x(s ≈ t).

(iv) TΣ(X)/E |= ∀~x(s ≈ t).

Proof. (i)⇔(ii): Lemma 4.2.

(ii)⇒(iii): By induction on the size of the derivation for E ⊢ s ≈ t.

(iii)⇒(iv): Obvious, since T = TΣ(X)/E is an E-algebra.

(iv)⇒(ii): Lemma 4.5. ✷

Universal Algebra

TΣ(X)/E = TΣ(X)/≈E = TΣ(X)/↔∗
E is called the free E-algebra with generating set

X/≈E = { [x] | x ∈ X }:

Every mapping ϕ : X/≈E → B for some E-algebra B can be extended to a homomor-
phism ϕ̂ : TΣ(X)/E → B.

TΣ(∅)/E = TΣ(∅)/≈E = TΣ(∅)/↔
∗
E is called the initial E-algebra.

≈E = { (s, t) | E |= s ≈ t } is called the equational theory of E.

≈I
E = { (s, t) | TΣ(∅)/E |= s ≈ t } is called the inductive theory of E.

Example:

Let E = {∀x(x + 0 ≈ x), ∀x∀y(x + s(y) ≈ s(x + y))}. Then x + y ≈I
E y + x, but

x+ y 6≈E y + x.

109

4.3 Confluence

Let (A,→) be an abstract reduction system.

b and c ∈ A are joinable, if there is a a such that b→∗ a←∗ c.
Notation: b ↓ c.

The relation → is called

Church-Rosser, if b↔∗ c implies b ↓ c.

confluent, if b←∗ a→∗ c implies b ↓ c.

locally confluent, if b← a→ c implies b ↓ c.

convergent, if it is confluent and terminating.

Theorem 4.7 The following properties are equivalent:

(i) → has the Church-Rosser property.

(ii) → is confluent.

Proof. (i)⇒(ii): trivial.

(ii)⇒(i): by induction on the number of peaks in the derivation b↔∗ c. ✷

Lemma 4.8 If → is confluent, then every element has at most one normal form.

Proof. Suppose that some element a ∈ A has normal forms b and c, then b←∗ a→∗ c.
If → is confluent, then b →∗ d ←∗ c for some d ∈ A. Since b and c are normal forms,
both derivations must be empty, hence b →0 d ←0 c, so b, c, and d must be identical.

✷

Corollary 4.9 If → is normalizing and confluent, then every element b has a unique
normal form.

Proposition 4.10 If→ is normalizing and confluent, then b↔∗ c if and only if b↓ = c↓.

Proof. Either using Thm. 4.7 or directly by induction on the length of the derivation
of b↔∗ c. ✷

110

Confluence and Local Confluence

Theorem 4.11 (“Newman’s Lemma”) If a terminating relation→ is locally conflu-
ent, then it is confluent.

Proof. Let → be a terminating and locally confluent relation. Then →+ is a well-
founded ordering. Define φ(a) ⇔

(

∀b, c : b←∗ a→∗ c⇒ b ↓ c
)

.

We prove φ(a) for all a ∈ A by well-founded induction over →+:

Case 1: b←0 a→∗ c: trivial.

Case 2: b←∗ a→0 c: trivial.

Case 3: b←∗ b′ ← a→ c′ →∗ c: use local confluence, then use the induction hypothesis.
✷

Rewrite Relations

Corollary 4.12 If E is convergent (i. e., terminating and confluent), then s ≈E t if and
only if s↔∗

E t if and only if s↓E = t↓E .

Corollary 4.13 If E is finite and convergent, then ≈E is decidable.

Reminder:
If E is terminating, then it is confluent if and only if it is locally confluent.

Problems:

Show local confluence of E.

Show termination of E.

Transform E into an equivalent set of equations that is locally confluent and termi-
nating.

111

4.4 Critical Pairs

Showing local confluence (Sketch):

Problem: If t1 ←E t0 →E t2, does there exist a term s such that t1 →
∗
E s←∗

E t2 ?

If the two rewrite steps happen in different subtrees (disjoint redexes): yes.

If the two rewrite steps happen below each other (overlap at or below a variable
position): yes.

If the left-hand sides of the two rules overlap at a non-variable position: needs further
investigation.

Question:
Are there rewrite rules l1 → r1 and l2 → r2 such that some subterm l1|p and l2 have
a common instance (l1|p)σ1 = l2σ2 ?

Observation:
If we assume w.l.o.g. that the two rewrite rules do not have common variables, then
only a single substitution is necessary: (l1|p)σ = l2σ.

Further observation:
The mgu of l1|p and l2 subsumes all unifiers σ of l1|p and l2.

Let li → ri (i = 1, 2) be two rewrite rules in a TRS R whose variables have been renamed
such that var(l1) ∩ var(l2) = ∅. (Remember that var(li) ⊇ var(ri).)

Let p ∈ pos(l1) be a position such that l1|p is not a variable and σ is an mgu of l1|p and
l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

The critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.

Theorem 4.14 (“Critical Pair Theorem”) A TRS R is locally confluent if and only
if all its critical pairs are joinable.

Proof. “only if”: obvious, since joinability of a critical pair is a special case of local
confluence.

“if”: Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at positions
pi ∈ pos(s), where i = 1, 2. Without loss of generality, we can assume that the two rules
are variable disjoint, hence s|pi = liθ and ti = s[riθ]pi.

We distinguish between two cases: Either p1 and p2 are in disjoint subtrees (p1 ‖ p2), or
one is a prefix of the other (w.l.o.g., p1 ≤ p2).

112

Case 1: p1 ‖ p2.

Then s = s[l1θ]p1[l2θ]p2, and therefore t1 = s[r1θ]p1[l2θ]p2 and t2 = s[l1θ]p1 [r2θ]p2 .

Let t0 = s[r1θ]p1 [r2θ]p2 . Then clearly t1 →R t0 using l2 → r2 and t2 →R t0 using
l1 → r1.

Case 2: p1 ≤ p2.

Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x.

In other words, the second rewrite step takes place at or below a variable in the first
rule. Suppose that x occurs m times in l1 and n times in r1 (where m ≥ 1 and n ≥ 0).

Then t1 →
∗
R t0 by applying l2 → r2 at all positions p1q

′q2, where q′ is a position of x in
r1.

Conversely, t2 →
∗
R t0 by applying l2 → r2 at all positions p1qq2, where q is a position of

x in l1 different from q1, and by applying l1 → r1 at p1 with the substitution θ′, where
θ′ = θ[x 7→ (xθ)[r2θ]q2].

Case 2.2: p2 = p1p, where p is a non-variable position of l1.

Then s|p2 = l2θ and s|p2 = (s|p1)|p = (l1θ)|p = (l1|p)θ, so θ is a unifier of l2 and l1|p.

Let σ be the mgu of l2 and l1|p, then θ = τ ◦ σ and 〈r1σ, (l1σ)[r2σ]p〉 is a critical pair.

By assumption, it is joinable, so r1σ →
∗
R v ←∗

R (l1σ)[r2σ]p.

Consequently, t1 = s[r1θ]p1 = s[r1στ]p1 →
∗
R s[vτ]p1 and t2 = s[r2θ]p2 = s[(l1θ)[r2θ]p]p1 =

s[(l1στ)[r2στ]p]p1 = s[((l1σ)[r2σ]p)τ]p1 →
∗
R s[vτ]p1 .

This completes the proof of the Critical Pair Theorem. ✷

Note: Critical pairs between a rule and (a renamed variant of) itself must be considered
– except if the overlap is at the root (i. e., p = ε).

Corollary 4.15 A terminating TRS R is confluent if and only if all its critical pairs are
joinable.

Proof. By Newman’s Lemma and the Critical Pair Theorem. ✷

Corollary 4.16 For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule there is
at most one critical pair 〈u1, u2〉.

Reduce every ui to some normal form u′
i. If u′

1 = u′
2 for every critical pair, then R is

confluent, otherwise there is some non-confluent situation u′
1 ←

∗
R u1 ←R s→R u2 →

∗
R u′

2.
✷

113

4.5 Termination

Termination problems:

Given a finite TRS R and a term t, are all R-reductions starting from t terminating?

Given a finite TRS R, are all R-reductions terminating?

Proposition 4.17 Both termination problems for TRSs are undecidable in general.

Proof. Encode Turing machines using rewrite rules and reduce the (uniform) halting
problems for TMs to the termination problems for TRSs. ✷

Consequence:

Decidable criteria for termination are not complete.

Two Different Scenarios

Depending on the application, the TRS whose termination we want to show can be

(i) fixed and known in advance, or

(ii) evolving (e.g., generated by some saturation process).

Methods for case (ii) are also usable for case (i).
Many methods for case (i) are not usable for case (ii).

We will first consider case (ii);
additional techniques for case (i) will be considered later.

Reduction Orderings

Goal:

Given a finite TRS R, show termination of R by looking at finitely many rules l →
r ∈ R, rather than at infinitely many possible replacement steps s→R s′.

A binary relation ⊐ over TΣ(X) is called compatible with Σ-operations, if s ⊐ s′ implies
f(t1, . . . , s, . . . , tn) ⊐ f(t1, . . . , s

′, . . . , tn) for all f ∈ Ω and s, s′, ti ∈ TΣ(X).

Lemma 4.18 The relation ⊐ is compatible with Σ-operations, if and only if s ⊐ s′

implies t[s]p ⊐ t[s′]p for all s, s′, t ∈ TΣ(X) and p ∈ pos(t).

114

Note: compatible with Σ-operations = compatible with contexts.

A binary relation ⊐ over TΣ(X) is called stable under substitutions, if s ⊐ s′ implies
sσ ⊐ s′σ for all s, s′ ∈ TΣ(X) and substitutions σ.

A binary relation ⊐ is called a rewrite relation, if it is compatible with Σ-operations and
stable under substitutions.

Example: If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over TΣ(X) that is a rewrite relation is called rewrite ordering.

A well-founded rewrite ordering is called reduction ordering.

Theorem 4.19 A TRS R terminates if and only if there exists a reduction ordering ≻
such that l ≻ r for every rule l → r ∈ R.

Proof. “if”: s →R s′ if and only if s = t[lσ]p, s
′ = t[rσ]p. If l ≻ r, then lσ ≻ rσ and

therefore t[lσ]p ≻ t[rσ]p. This implies →R ⊆ ≻. Since ≻ is a well-founded ordering, →R

is terminating.

“only if”: Define ≻ =→+

R. If →R is terminating, then ≻ is a reduction ordering. ✷

The Interpretation Method

Proving termination by interpretation:

Let A be a Σ-algebra; let ≻ be a well-founded strict partial ordering on its universe.

Define the ordering ≻A over TΣ(X) by s ≻A t iffA(β)(s) ≻ A(β)(t) for all assignments
β : X → UA.

Is ≻A a reduction ordering?

Lemma 4.20 ≻A is stable under substitutions.

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all assignments β : X → UA. Let
σ be a substitution. We have to show that A(γ)(sσ) ≻ A(γ)(s′σ) for all assignments
γ : X → UA. Choose β = γ ◦ σ, then by the substitution lemma, A(γ)(sσ) = A(β)(s) ≻
A(β)(s′) = A(γ)(s′σ). Therefore sσ ≻A s′σ. ✷

A function φ : Un
A → UA is called monotone (with respect to ≻), if a ≻ a′ implies

φ(b1, . . . , a, . . . , bn) ≻ φ(b1, . . . , a
′, . . . , bn) for all a, a

′, bi ∈ UA.

Lemma 4.21 If the interpretation fA of every function symbol f is monotone w. r. t. ≻,
then ≻A is compatible with Σ-operations.

115

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all β : X → UA. Let β : X → UA

be an arbitrary assignment. Then

A(β)(f(t1, . . . , s, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))

≻ fA(A(β)(t1), . . . ,A(β)(s
′), . . . ,A(β)(tn))

= A(β)(f(t1, . . . , s
′, . . . , tn))

Therefore f(t1, . . . , s, . . . , tn) ≻A f(t1, . . . , s
′, . . . , tn). ✷

Theorem 4.22 If the interpretation fA of every function symbol f is monotone w. r. t.≻,
then ≻A is a reduction ordering.

Proof. By the previous two lemmas, ≻A is a rewrite relation. If there were an infinite
chain s1 ≻A s2 ≻A . . . , then it would correspond to an infinite chain A(β)(s1) ≻
A(β)(s2) ≻ . . . (with β chosen arbitrarily). Thus ≻A is well-founded. Irreflexivity and
transitivity are proved similarly. ✷

Polynomial Orderings

Polynomial orderings:

Instance of the interpretation method:

The carrier set UA is N or some subset of N.

To every function symbol f/n we associate a polynomial Pf (X1, . . . , Xn) ∈ N[X1, . . . , Xn]
with coefficients in N and indeterminates X1, . . . , Xn. Then we define fA(a1, . . . , an) =
Pf(a1, . . . , an) for ai ∈ UA.

Requirement 1:

If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise, A would not be a Σ-
algebra.)

Requirement 2:

fA must be monotone (w. r. t. ≻).

From now on:

UA = {n ∈ N | n ≥ 1 }.

If arity(f) = 0, then Pf is a constant ≥ 1.

If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . , Xn), such that every Xi occurs
in some monomial m · Xj1

1 · · ·X
jk
k with exponent at least 1 and non-zero coefficient

m ∈ N.

⇒ Requirements 1 and 2 are satisfied.

116

